
Extraplanetary Launchpads
User’s and Modder’s Guide

Bill Currie (taniwha)

1

Introduction
Building bases and space stations in Kerbal Space Program can be fun and rewarding
on its own: they look good and allow for the production or storage of fuel and science,
but they amount to little more than outposts. One main problem with such outposts
is that when things go wrong and repairs are needed, they are highly dependent on
resupply runs from the KSC1. A bigger problem is they serve only as way stations for
grand missions: it is very difficult to use them as the origin of such missions as all the
vessels comprising the grand mission must be launched from the KSC.

Extraplanetary Launchpads (or EL for short2) gives additional meaning to planetary
bases and orbiting space stations by allowing for the construction of all manner of vessels
away from the KSC. The construction can be carried out both on the surface of any body
and in orbit. However, EL does not do anything for life support supplies (other mods
have that covered), or the expansion of the kerbal population at the base or station.

EL defines the resources3 used in the construction of vessels, and provides the parts
required to obtain and process those resources into the final product: a vessel that can
be an independent ship (or other vehicle), base, station, a module for a larger vessel, or
even individual parts4.

1Kerbal Space Center? Kerbin Space Center? Kerman Space Center? Kraken Snack Constructor?
2Just like “extraterrestrial”, “extraplanetary” is (or would be) one word, and “launchpad” is also one

word, thus in this case TLA is Two Letter Acronym.
3Other mods can define other resource that replace those defined by EL.
4Though currently a little awkwardly.

2

Contents

I. Using Extraplanetary Launchpads 5

1. Getting Started 5
1.1. Installation . 5

1.1.1. Minimal Installation . 5
1.1.2. Survey Build Support . 5
1.1.3. Recommended Mods . 5
1.1.4. Mods that support or use EL . 5

1.2. Setup . 6

2. Construction Basics 6
2.1. Resources . 6

2.1.1. Prospecting and Mining: dirt? to MetalOre 7
2.1.2. Smelting: MetalOre to Metal 7
2.1.3. Working: Metal to RocketParts 8
2.1.4. Remelting: ScrapMetal to Metal 8
2.1.5. Building: RocketParts to Rockets 8
2.1.6. Recycling: RocketParts to ScrapMetal 8

2.2. Productivity . 8
2.3. Construction Skill . 9

2.3.1. Unskilled kerbals . 9
2.3.2. Non-career modes . 9

2.4. Workshops . 10
2.4.1. Fully equipped . 10
2.4.2. Other parts . 10

2.5. Pads . 10
2.5.1. Launchpads and Orbital Docks . 10
2.5.2. Survey Stations and Survey Stakes 10

3. Survey System 11
3.1. Survey Station . 11
3.2. Survey Site . 11

II. Modding Extraplanetary Launchpads 13

4. Modules provided by EL 13
4.1. Overview . 13
4.2. Configuration . 13

4.2.1. ExRecycler . 13
4.2.2. ExLaunchPad . 14
4.2.3. ExTarget . 14

3

4.2.4. ExWorkshop . 15
4.2.5. ExSurveyStation . 15
4.2.6. ExSurveyStake . 15

5. Recipes 16
5.1. Recipes for Building . 16
5.2. Recipes for Recycling . 18

References 21

4

Part I.
Using Extraplanetary Launchpads
1. Getting Started
1.1. Installation
1.1.1. Minimal Installation

Download the zip file for the latest version via the EL forum thread[14] and extract
its contents to KSP’s GameData directory5. Ensure that the latest version of Module
Manager[13] is installed correctly.

Note that the minimal installation will not support survey builds.

1.1.2. Survey Build Support

In order to support survey builds, Kerbal Inventory System[5] is required.

1.1.3. Recommended Mods

There are several mods that improve EL:

Kerbal Alarm Clock[21] Keep track of when a build will be finished. Really, the most
important mod for anybody wishing to run more than one mission at a time.

KerbalStats[17] Provides a means to extend kerbal attributes, but in the context of EL
it provides time and activity based experience for kerbals.

Kethane[18] The original ISRU solution for KSP. Provides hot-spot mining of Met-
alOre.

Modular Fuel Tanks[19] Edit tank resources in the editor.

Talisar Parts[20] High capacity spherical tanks (up to over 200m3) and various struc-
tural parts.

Kerbal Attachment System[4] Pipes and winches.

TAC FuelBalancer[22] Easier transferal of resources.

1.1.4. Mods that support or use EL

Kerbal Planetary Base Systems[8] Several new parts that are designed to be used in
a planetary base for the kerbals.

5Ok, folder. Now get off my lawn ;)

5

Pathfinder[2] Space Camping & Geoscience.

SimpleConstuction[11] Uses EL but stock parts.

1.2. Setup
The first time the space center scene is entered, an options window will be presented
allowing for the selection.

2. Construction Basics

prospecting

mining

smelting

MetalOre

working

Metal

building

RocketParts

remelting

ScrapMetal

recycling

Vessel

ScrapMetal

Metal

shipping
MetalOre

Metal

RocketParts

Vessel

2.1. Resources
Currently, EL uses four resources for its production chain (though the recipe system (5)
allows for much more complicated systems).

MetalOre Assumed to be iron ore (but not explicitly stated as such) but with a slightly
higher density (5.5t/m3 vs 4.5t/m3 − 5.3t/m3).

Metal Assumed to be iron (but not explicitly stated as such) and thus has a density of
7.8t/m3.

RocketParts Assumed to be sub-parts ready for assembly into actual parts, and thus
has a very low density of 0.5t/m3.

6

It may be
worthwhile
thinking of
the stock
system pro-
viding a
means to
extract Met-
alOre from
a larger mix
of “dirt”,
while the
Kethane
system
provides
access to
rich veins of
MetalOre.

ScrapMetal The true product of any machine shop: all machine shops produce scrap
metal in various forms and efficiencies. The lumps of metal handed over to the
customer are really the left-overs from producing scrap metal. Scrap metal gen-
erally does not pack well, though better than parts, so a density of 0.8t/m3 was
chosen as an average.

2.1.1. Prospecting and Mining: dirt? to MetalOre

In order to obtain MetalOre when away from the KSC, one of the augers is used to
mine MetalOre from the surface of the planet or moon. EL uses the stock resource
distribution system configured to distribute MetalOre, so prospecting is done as for
stock’s Ore resource, but with a focus on MetalOre instead.

Kethane and Karbonite Prior to KSP 1.0, EL relied solely on Kethane[18] for its
prospecting and mining, and there was an adaptation to make EL use Karbonite[10]
instead.

As of KSP 1.0 (EL 5.1.90) Kethane is completely optional, but if present, will be used
on top of the stock resource system. Scanning is quite separate, but mining is done
using the exact same augers. Mining outside a MetalOre deposit created by Kethane
will extract MetalOre at the rate dictated by the concentration given by the stock
system (1% to 15%), but deposits created by Kethane effectively provide hot-spots of
100% concentration.

The Karbonite adaptation seems to have been mothballed, but it was mostly a parts
mod with configs for EL, so it may still be usable.

2.1.2. Smelting: MetalOre to Metal

MetalOre is converted to Metal via smelting. Smelting is the process of reducing6

metal oxides. EL assumes MetalOre is Fe2O3 (the most common iron ore on Earth).
Reducing Fe2O3 is a three-step process (from Wikipedia):

Stage One 3Fe2O3 + CO → 2Fe3O4 + CO2

Stage Two Fe3O4+ CO → 3FeO + CO2

Stage Three FeO + CO → Fe + CO2

However, this really happens all at once in a smelter so the effective process is 3Fe2O3
+ 9CO → 6Fe + 9CO2.

Fe has a molar mass of 55.845g/mol, O has a molar mass of 15.999g/mol 7, so 479.061g
of 3Fe2O3 will produce 335.070g of Fe. This leads to a MetalOre to Metal mass
conversion rate of 0.6994318.

6Chemistry term, the opposite of oxidizing (or reduction vs oxidization).
7EL currently does not model CO consumption or CO2 production, but C has a molar mass of
12.0107g/mol giving CO a molar mass of 28.0097g/mol and CO2 a molar mass of 44.0087g/mol

80.493188 volume (resource unit) conversion rate.

7

Some of you
may have
had spotty
results recy-
cling entire
vessels: that
is inten-
tional, and
there is a
way around
it (see if you
can guess).

2.1.3. Working: Metal to RocketParts

Metal is converted to RocketParts by working it. Currently, this is done using either
the workshop (big blue part in Utilities), or the workbench (tower with little platforms in
Pods). Unfortunately, the process is quite bogus: Metal is used for for everything, and
the conversion speed is far too fast. However, the efficiency (0.7 by mass) is reasonable:
it is the estimated average of various means of production: cutting cast iron parts leads
to high efficiency, but cutting lumps of steel can lead to fairly low efficiency depending
on just how much metal needs to be cut away. At the same time, ScrapMetal is
produced at a rate of 0.2995 by mass (some scraps are lost).

2.1.4. Remelting: ScrapMetal to Metal

ScrapMetal can optionally be remelted to Metal using a smelter. The process is
lossless (conversion rate of 1), the loss (very small) occurs when producing the Scrap-
Metal. Storing and reclaiming ScrapMetal is fully optional: running out of storage
will not stop Metal to RocketParts conversion.

2.1.5. Building: RocketParts to Rockets

Building is done by the launchpads, orbital dock, or survey station (or just “pads” for
short). The rate is governed by the overall vessel productivity (measured in kerbal-
hours (Khr)) shared amongst active pads. Each ton of rocket (dry-mass) requires five
kerbal-hours (i.e. 5Kh/t).

There have been discussions that EL’s build rate is too high compared to Kerbal Con-
struction Time, but those arguing that side were unaware that RocketParts represent
components to be assembled into the parts visible in KSP. The building process is re-
ally just the kerbals putting those components together. It is the smelting and working
stages that are unrealistically fast.

2.1.6. Recycling: RocketParts to ScrapMetal

Recycling is done on a part-by-part basis. When a part is recycled, it is first drained
of any resources it contains (e.g., LiquidFuel or Oxidizer), and those resources will
evaporate, be broken down into other resources to be reclaimed, or transfered and thus
reclaimed depending on the resource (most will be transfered). Once the part has been
drained, it will be broken down from RocketParts to ScrapMetal and the Scrap-
Metal reclaimed.

Of course, any reclaimed resource needs storage space. Otherwise, it will be lost.

2.2. Productivity
All kerbals have a base productivity score determined by their stupidity, courage, and
bad-ass characteristics. The more stupid a kerbal is, the less that kerbal will contribute
to the workshop’s (and thus the overall vessel’s) productivity, and more courageous

8

kerbals will, in general, contribute less than less courageous kerbals, though bad-ass
kerbals complicate the relationship. It is entirely possible for a kerbal to have negative
productivity.

If the KerbalStats[17] mod is installed, then the amount of time a kerbal has spent
in certain workshops (currently only EL’s blue workshop (afaik)) improves the kerbal’s
productivity.

A workshop’s productivity is the sum of the productivities of all kerbals working in
that shop. A vessel’s productivity is the sum of the productivities of all workshops
in that vessel. If the vessel’s productivity is greater than zero, then construction will
progress. Negative productivity does not cause production to become destruction, in-
stead it causes a productivity deficit that must be overcome by better construction
kerbals before construction will proceed.

2.3. Construction Skill
Kerbals with the construction skill (by default, engineers, but hereon referred to as
construction kerbals) are the cornerstone of workshop productivity. However, their
space-faring (stock) experience affects their productivity greatly.
0 stars The kerbal can work in a fully equipped workshop.

1 star The kerbal can work in any workshop.

2 stars The kerbal is always productive in a fully equipped workshop (base productivity
still matters, but to get negative productivity, the kerbal would have to have
infinitely negative base productivity).

3 stars The kerbal is always productive in any workshop.

4 stars The kerbal enables skilled workers in any workshop (a 4-star construction kerbal
in an under-equipped workshop allows 0-star construction kerbals to contribute).

5 stars The kerbal enables unskilled workers in a fully equipped workshop (a 5-star
construction kerbal in a fully equipped workshop allows any kerbal, even those
without the construction skill, to contribute).

2.3.1. Unskilled kerbals

Unskilled kerbals cannot work unless a 5-star construction kerbal is present in the same
workshop, and the workshop must be fully equipped, but if the kerbal’s experience level
is 2 or less, and the kerbal’s base productivity is negative, the kerbal will detract from
the workshop’s productivity.

2.3.2. Non-career modes

In sandbox (and science?) mode, all kerbals are level 5, so there will be no negative
contributions, and if there is at least one construction kerbal in the workshop, then all
kerbals of sufficient ability will contribute.

9

For role-
play pur-
poses, “fully
equipped”
can be
thought of
as the work-
shop having
all the nec-
essary tools,
and the
productivity
factor as
being the
quality of
the tools or
the level of
automation
available.

2.4. Workshops
Workshops, too, affect productivity. All workshops have a productivity factor that is
multiplied by the sum of the productivities of the kerbals working in that shop. The
resulting productivity is then passed to the vessel.

2.4.1. Fully equipped

Fully equipped workshops are those with a productivity factor of 1.0 or more, or specially
marked workshops with lower productivity factors. EL’s blue workshop, and the rocket
workbench are both fully equipped workshops.

2.4.2. Other parts

All stock crewed parts act as under-equipped workshops. In addition, all crewed com-
mand pods, including those from other mods, act as under-equipped workshops. Many
base-building mods (eg, USI-MKS[12], Pathfinder[2]) provide workshops (refer to those
mods for details).

2.5. Pads
All construction is done at “pads”, whether the pad is an orbital dock, a launchpad, or
a survey site (marked out using survey stakes and managed by a survey station).

Initiating construction is the same for everything: open the build window (via either
the toolbar button (blizzy’s toolbar[3], or the stock app button), or the Show UI button
in the PAW9), select the craft to build, and press the Build button. Between selecting the
craft to build and pressing the Build button, the required and optional resources for the
build will be displayed in a preview. There is no need to have all the required resources
on-hand when beginning the build: if they run out during the build, the build will stop
until the resources become available and then automatically resume. The resources can
become available via supply runs or local processing.

2.5.1. Launchpads and Orbital Docks

Technically, there is no difference between a launchpad and an orbital dock: they operate
exactly the same way. The difference comes in the physical form of the parts: launchpads
are optimized for grounded operation, and the orbital dock is optimized for orbital
operation.

Adjusting the optional resources in the preview will set the defaults for the amounts
to be transfered upon release.

2.5.2. Survey Stations and Survey Stakes

Survey stations use local survey sites to specify the location and orientation of the built
vessel. Survey sites are sets of one or more survey stakes with the same name and within

9Part Action Window (right-click menu)

10

A stake’s
name de-
faults to the
name of the
kerbal who
planted it
with “Base”
appended.
Thus if
Valentina
plants a
stake, it will
be named
Valentina
Kerman
Base.
Thus, when
creating a
site consist-
ing of more
than one
stake, it is
easiest to
have only
one kerbal
do the stake
planting.
Also, if
multiple
local sites
are desired,
getting a
different
kerbal to
plant the
stakes for
each site
will make it
easier.

The VAB
orientation
really is
weird.

range (200m) of each other.
Adjusting the optional resources in the preview will have no effect as no resources will

be transfered.

3. Survey System
When landed, orbital docks can be awkward for building as they tend to be on top of
the building vessel (especially awkward for building rovers as getting the rover to the
ground can be an issue), and lauchpads are highly sensitive to ground conditions, and
and have their own issues when building large vessels. Also, they provide no flexibility
in placement or orientation of the build.

EL’s survey system greatly eases the seeding (or even complete build-out) of bases,
and works equally well for building ships and other vessels. However, they do have one
disadvantage: any optional resources (liquid fuel, oxidizer, electric charge, etc) will not
be transfered: the build will be empty of such resources (freedom is not free), but as
KIS[5] is required to place the stakes, and KAS[4] is almost always installed with it, this
disadvantage should be only minor10.

The survey system consists of two parts11: the survey station, and the survey site.
The survey station (a re-purposed hitchhiker can) is used to keep track of the survey
sites and do the actual building (it serves the same purpose as the orbital dock or a
launchpad, but must be landed), and must be flown down to the surface in the vicinity
of where the builds will occur. The survey site is ephemeral: it is marked out by one or
more survey stakes and is used to specify the location and orientation of the build.

3.1. Survey Station
3.2. Survey Site
Stakes have two modes with seven settings in each mode (default is Direction:Origin):

Direction these are used to control the orientation of the build.
Origin used to mark the location above which the build’s root part will be placed,

and also forms the reference point for other direction stakes that aren’t in
pairs.

-X and +X used to specify the lateral (port (-X) and starboard (+X)) axis of the
build (both VAB and SPH). If both -X and +X are used, then the origin is
is ignored, otherwise the axis runs from -X to origin or origin to +X.

-Y and +Y used to specify the ”vertical” (nadir (-Y) and zenith (+Y)) axis of
the build (relative to the floor in the VAB or SPH). If both -Y and +Y are
used, then the origin is is ignored, otherwise the axis runs from -Y to origin
or origin to +Y. NOTE: not recommended, very advanced usage.

10It can, however, lead to good entertainment: [1]
11If you’re thinking KSP parts, then it’s three: survey station, survey stake, and mallet.

11

-Z and +Z used to specify the ventral(+Z)/dorsal(-Z) (VAB) or fore(+Z)/aft(-Z)
(SPH) axis of the build. If both -Z and +Z are used, then the origin is is
ignored, otherwise the axis runs from -Z to origin or origin to +Z.

* If none of the axis direction stakes are used, then the default orientation is such
that the build’s +Y axis is the local up, +X axis points east, and +Z points
north (same as on the KSC launchpad).

* If the axes marked out by the stakes are not perfectly orthogonal, then the build
will be oriented such that the errors are balanced.

Bounds these are used to control the placement of the build based on its bounding box
rather than its root part.
Origin used to mark the location of the root part along any axis that has not been

bound.
-X and +X used to mark the lateral (port (-X) and starboard (+X)) edges of the

build. If only one of -X or +X is used, then that edge of the build will be
exactly on that stake, otherwise the the X-axis center of the build’s bounding
box will be centered on the midpoint between the two stakes.

-Y and +Y used to mark the ”vertical” (nadir (-Y) and zenith (+Y)) edges of the
build. If only one of -Y or +Y is used, then that edge of the build will be
exactly on that stake, otherwise the the Y-axis center of the build’s bounding
box will be centered on the midpoint between the two stakes. NOTE: use
of the +Y bounds stake is not recommended unless you know what you are
doing.

-Z and +Z used to mark the ventral(+Z)/dorsal(-Z) (VAB) or fore(+Z)/aft(-Z)
(SPH) edges of the build. If only one of -Z or +Z is used, then that edge
of the build will be exactly on that stake, otherwise the the Z-axis center of
the build’s bounding box will be centered on the midpoint between the two
stakes.

* Bounds stakes and direction stakes work together: any unbound axis of the build
slides along that axis of the reference frame created by the direction stakes (or the
default frame if no direction stakes are used).

* There is actually only one origin stake: there is no difference between a bounds origin
stake and a direction origin stake. The appearance of there being two origin stakes
is due to the overly simple controls.

* If multiple stakes of the same type+setting have been placed, then they will be aver-
aged together to form a virtual stake of the same type+setting. This can be very
useful with multiple origin stakes to avoid the build clipping into the stake when
the lowest part of the build is directly below the root part.

* If no origin stakes have been placed, then the average of all other stakes is used as the
origin point.

12

* The actual location of the stakes is about 19cm above the ground.

* If no Y bounds stake has been placed, then the origin acts as an implicit -Y bounds
stake (otherwise almost all builds would spawn in the ground).

Part II.
Modding Extraplanetary Launchpads
4. Modules provided by EL
4.1. Overview
ExRecycler Destroys anything it touches (including unfortunate kerbals), reclaiming

what resources it can.

ExLaunchPad Builds complete vessels attached (pseudo-docked) to the current vessel.
Allows post-build resource transfer without any extra fuss. Supports building both
landed or in orbit.

ExTarget Allows a part to be targeted. Includes orientation so it works with any docking
alignment mod (DPAI[7], navball[6], and navhud[9] are known to work).

ExWorkshop Collect productivity from kerbals in the part. Works with either normal
parts with crew capacity or command chairs.

ExSurveyStation Builds complete vessels at locations marked out using survey stakes
(parts with the ExSurveyStake module). Does not allow post-build resource trans-
fer (freedom is not free), but as KIS[5] is required to place the stakes, and KAS[4]
is almost always installed with it, survey stations are probably the preferred tool
for landed operations.

ExSurveyStake Marks locations for survey station. In the current implementation, a
stake must be the only part in the vessel for the survey station to recognize it.

4.2. Configuration
For the most part, EL places no restrictions on the models used for parts using EL’s
module, so unless otherwise stated, models are completely free-form as far as EL is
concerned.

4.2.1. ExRecycler

Model Requirements The only requirement is the recycle field. The recycle field must
be a trigger collider and should (must?) not touch any other collider.

13

Part Requirements None.

Module Fields

RecycleField_name Specifies the name of the transform for the recycle field collider.
Defaults to “ReycleField”.

RecycleRate Specifies the recycling rate in tons/second. Defaults to 1.0t/s.

4.2.2. ExLaunchPad

Model Requirements No requirements, but it is highly recommended that the part
has plenty of free space “above” (positive Y-axis in KSP/Unity, Z-axis in Blender) the
launch transform.

Part Requirements None.

Module Fields

SpawnHeightOffset Specifies the distance in meters above the launch transform of the
lowest point of the spawned vessel. This is most useful when the model does not
have a specific spawn transform. Defaults to 0.0m.

SpawnTransform Specifies the model transform to be used as the launch transform.
Optional, but using a spawn transform allows finer control over the launch position
than that afforded by SpawnHeightOffset, and also allows the orientation to be
specified. If not specified, the model’s root transform will be used as the launch
transform (setting SpawnHeightOffset is highly recommended, but not as highly
as having a spawn transform).

PadName Specifies the name of the launchpad. Note that this is editable by the user
both in the editor (VAB/SPH) or in flight.

4.2.3. ExTarget

Model Requirements None.

Part Requirements None.

Module Fields

TargetTransform Specifies the model transform to be used as the target. If not specified
(the default), the model’s root transform will be used.

TargetName String to be added after the host vessel’s name when set as target. Defaults
to “Target”.

14

4.2.4. ExWorkshop

Model Requirements None.

Part Requirements The part must have some crew capacity. This can be via either
the part’s crewCapacity field, or KerbalSeat (stock KSP) modules (currently, not both:
for KerbalSeat to be checked, the crewCapacity must be 0). Note that parts may have
multiple KerbalSeat modules on them (eg, EL’s Rocket Workbench).

Module Fields

ProductivityFactor Specifies the multiplier for calculating kerbal productivity. Must
be greater than 0. All workshops with ProductivityFactor greater than 1.0 are
considered to be fully equipped (ie, even 0-star kerbals with the construction skill
can contribute). Defaults to 1.0.

FullyEquipped If true, then even workshops with productivity factors less than 1.0 are
considered fully equipped allowing 0-star kerbals to contribute.

IgnoreCrewCapacity If true, the workshop will operate even if the part’s crewCapacity
is 0 (and not check for KerbalSeat). This is most useful on parts with dynamic
crew capacities (eg, inflatables).

4.2.5. ExSurveyStation

Model Requirements None.

Part Requirements No requirements, but as kerbals improve its range, having crew
capacity (crewCapacity > 0 or KerbalSeat modules) is recommended.

Module Fields

StationName Specifies the name of the survey station. Note that this is editable by the
user both in the editor (VAB/SPH) or in flight.

4.2.6. ExSurveyStake

Model Requirements None except any required by KIS[5] for ground attachment.

Part Requirements As the survey system will not look at vessels with more than one
part to check for the ExSurveyStake module, the part should be configured to be ground
attached using KIS[5]. However, parts designed to be dropped via staging or decoupling
will work, too, so long as the resulting vessel consists of only the one part.

Module Fields None.

15

5. Recipes
Extraplanetary Launchpads provides, via recipes, a means of customizing the resource
costs for building parts, their modules and resources, and thus whole vessels. The recipes
are used also for recycling.

Essentially, recipes are config nodes with a list of ingredients with their ratios in the
form of IngredientName = Ratio, although each recipe type will be a little more
complex (details given below). The final ratio of each ingredient is calculated by dividing
the specified ratio by the sum of the ratios of all ingredients in the recipe such that the
final total is 1.0. This allows for flexibility in how the ratios are specified, so long as
consistency is maintained throughout the individual recipe: they can be considered as
“parts” as in when mixing drinks (one part this, two parts that...), as masses in any unit
(24g this, 16g that, 6g the other12), percentages (if they add up to 100), or raw ratios
(if they add up to 1.0). Note, however, that EL always uses mass for its calculations.

For example, glucose (C6H12O6) using approximate molar masses:

Using masses:

Carbon = 72
Hydrogen = 12
Oxygen = 96

Using parts:

Carbon = 6
Hydrogen = 1
Oxygen = 8

Using raw ratios:

Carbon = 0.4
Hydrogen = 0.06667
Oxygen = 0.53333

In general, the ingredients will be KSP resources. EL looks up the resource to find its
density and calculates the amount of resource required based on the total mass of the
recipe, the ingredient’s ratio within the recipe as a fraction of the total mass, and the
density of the resource to give the resource units required to achieve that mass.

Ingredients may be repeated within a recipe, in which case their ratios will simply be
added together. This makes creating recipes from chemical formula a little easier.

Unknown ingredients contribute to the total ratio and thus affect the ratios of known
ingredients. Their effects when building are undefined, but they operate as losses when
recycling (i.e., unknown ingredients simply evaporate when a part is recycled).

5.1. Recipes for Building
Building parts (and thus vessels) requires resources. The total mass of the resources
required for building a part is given by the part’s mass, but the mix of resources needed
by the part is given by the part’s recipe. Also, certain resources stored in a part (e.g.
SolidFuel, Ablator) cannot normally be created by other means (neither stock ISRU
nor Kethane provide a means to produce them), nor can they be transfered, so recipes
can be used for specifying how to build them.

Any resource listed in a recipe becomes a required resource (i.e. the build will not
complete if any required resource runs out). Note, however, that normal resources that
are simply stored in the part to be built remain optional. For example, to build a tank
that holds RocketParts, A mass of RocketParts equivalent to the dry mass of the

12A popular compound.

16

tank is required to build the tank itself, but the RocketParts used to fill the tank
remain optional. Thus, if there is a supply of RocketParts sufficient to build the
tank, but not enough to fill it, then the tank will be only partially full (or possibly even
empty) when built.

In summary:

• Any resource mentioned in EL_Recipe or EL_ModuleRecipe is required for building
(but not for filling tanks).

• Any stored resource that has an EL_ResourceRecipe becomes a required resource
(eg, SolidFuel).

• Any resource stored in a part inside a KIS container becomes a required resource,
regardless of recipes.

EL_Recipe Specify the resources needed to build a part. EL_Recipe is to be added to
the part’s config (either by hand or using Module Manager). EL_Recipe nodes
are really two nested recipes: the outer recipe specifies the ratios between the
part’s structure (using structure as the ingredient name) and its part modules
(the ingredient name is the name of the part module). The inner recipe is the
Resources node, which specifies the resources needed to build the part’s structure.
Any part that does not have an EL_Recipe node will be given the default shown
below, but with additional modulename = 1 lines for each part module on the part
that has a corresponding EL_ModuleRecipe. Also, the Resources node will be
taken from EL_DefaultStructureRecipe (both for parts that have no EL_Recipe
node, or whose EL_Recipe node has no Resources node).

EL_Recipe {
structure = 5
Resources {

RocketParts = 1
}

}

EL_ModuleRecipe Specify the resources needed to build any part’s module. Applies to
all instances of that module. The module to which the recipe applies is specified by
the name = line, and the actual recipe for the module is specified by the Resources
node. The mass of the module is calculated from the part’s mass using the ratio
specified in the part’s recipe. If the named module does not exist, no module is
named (ie, no top-level name = line), or no recipe is given (no Resources node),
the recipe will be dropped from the recipe database.
The example below gives EL’s module recipe for KerbalEVA. The ratios are in
kilograms, assuming a suited kerbal has a mass of 93.75kg (10kg for the kerbal).
It can be found in Kerbal.cfg[15].

17

EL_ModuleRecipe {
name = KerbalEVA
Resources {

Metal = 39
loss = 44.75

}
}

EL_DefaultStructureRecipe Specify the default recipe to be used for a part’s structure
when the part has no recipe or the recipe does not specify a recipe for its struc-
ture. There is no node in EL’s configs: it is hard coded. However, providing an
EL_DefaultStructureRecipe will override the hard-coded default.

EL_DefaultStructureRecipe {
RocketParts = 1

}

EL_ResourceRecipe Specify the resources needed to “build” a resource. The resource
to be “built” is specified by the name = line, and the recipe for the “built” resource
is specified by the Resources node. If no resource is named (ie, no top-level name
= line), or no recipe is given (no Resources node), the recipe will be dropped from
the recipe database. Recipes for undefined resources are permitted, allowing for
resource “macros”13. The example resource recipe shows Ablator being made
from RocketParts. It and a similar recipe for SolidFuel can be found in
Recipes.cfg[16].

EL_ResourceRecipe {
name = Ablator
Resources {

RocketParts = 1
}

}

5.2. Recipes for Recycling
First off, when recycling, part recipes (EL_Recipe) are used for breaking a part down into
its constituent resources. Whether from breaking down the part or “drained” from the
part’s resource storage, any resource that has a resource recipe (EL_ResourceRecipe)
will simply evaporate. However, if the resource has a recycle recipe (EL_RecycleRecipe),
then that recipe will instead be broken down to the resources specified by the recycle
recipe. A transfer recipe (EL_TransferRecipe) is used to force a stored resource that
would otherwise be lost or broken down by a recycle recipe to be transfered.

13TODO: In theory: not tested.

18

• Any resources stored in the part are drained. Those with an EL_TransferRecipe
are transferred accordingly. Those with an EL_ResourceRecipe but no EL_RecycleRecipe
are lost, otherwise they are broken down as dictated by the EL_RecycleRecipe
and the resultant resources will be transfered.

• The part is then broken down into the resources specified by its EL_Recipe and
EL_ModuleRecipe(s). Those resources with an EL_ResourceRecipe but no EL_RecycleRecipe
are lost, otherwise they get broken down further in accordance with their EL_RecycleRecipe.

• Whether transferring (from a tank) or recycling (the part itself), resources with
no recipe are reclaimed as-is at a 1:1 ratio.

EL_RecycleRecipe Specify the resources to which a resource will be broken down when
recycling. Prevents evaporation of the resource when the resource has a resource
recipe (EL_ResourceRecipe). The resource to be broken down is specified by
the name = line, and the recipe for the broken down resource is specified by the
Resources node. If no resource is named (ie, no top-level name = line), or no recipe
is given (no Resources node), the recipe will be dropped from the recipe database.
Ingredients specifying undefined resources are permitted, allowing for loss ratios to
be specified. The example recycle recipe shows RocketParts being broken down
to ScrapMetal with 10% loss (the exact name (loss) doesn’t matter so long as
it is not a defined resource). It can be found in Recipes.cfg[16].

EL_RecycleRecipe {
name = RocketParts
Resources {

ScrapMetal = 9
loss = 1

}
}

EL_TransferRecipe Specifies how a resource that was stored in a part is to be transfered.
Prevents the resource from being broken down by a recycle recipe when being
drained from a part’s storage. The resource to be transfered is specified by the
name = line, and the recipe for the transfered resource is specified by the Resources
node. If no resource is named (ie, no top-level name = line), or no recipe is given
(no Resources node), the recipe will be dropped from the recipe database. Recipes
for undefined resources are permitted, allowing for loss ratios to be specified. In
general, the same resource should be specified in the recipe, but a transfer recipe
can be used for converting a resource that does not have a recycle recipe, or for
specifying a loss factor while transferring. The example transfer recipe shows
RocketParts being transfered without any loss or conversion. It can be found
in Recipes.cfg[16].

EL_TransferRecipe {

19

name = RocketParts
Resources {

RocketParts = 1
}

}

EL_KerbalRecipe Specifies the resources making up a kerbal (whether on EVA or
boarded14). This is a special part recipe that is not actually attached to any
part15, and is used only when the unfortunate kerbal gets recycled. The kerbal
recipe shown below assumes a fully suited kerbal is 93.75kg (the default in KSP)
with 10kg for the kerbal and 83.75kg for the suit, with a 30:1 gain16 when con-
verting the kerbal to Kethane. It can be found in Kerbal.cfg[15].

EL_KerbalRecipe {
structure = 10
KerbalEVA = 83.75
Resources {

Kethane = 30
loss = -29

}
}

14The kerbal is assumed to be suited or have a suit nearby in the same part
15The need for the node came from not having access to KerbalEVA part configs at the time, and keeping

it after KSP 1.2 maintains flexibility.
16Highly unrealistic, but that is how the KE-WAITNONOSTOP-01 in Kethane is configured

20

References
[1] 5thHorseman. KSP Bases 0.90 - 29: Ike ELP Base: Check! - 5th Horseman Let’s

Play. url: https://www.youtube.com/watch?v=67vth86RQH0&t=1525.
[2] Angel-125. Pathfinder. url: http://forum.kerbalspaceprogram.com/index.

php?/topic/121397-pf/.
[3] blizzy78. Toolbar. url: http://forum.kerbalspaceprogram.com/index.php?

/topic/55420-tb/.
[4] IgorZ. Kerbal Attachment System. url: http://forum.kerbalspaceprogram.

com/index.php?/topic/142594-kas/.
[5] IgorZ. Kerbal Inventory System. url: http://forum.kerbalspaceprogram.com/

index.php?/topic/149848-kis/.
[6] linuxgurugamer. Navball docking alignment indicator (Community Edition, v2).

url: http://forum.kerbalspaceprogram.com/index.php?/topic/152739-
navball/.

[7] NavyFish. Docking Port Alignment Indicator. url: http://forum.kerbalspaceprogram.
com/index.php?/topic/40423-dpai/.

[8] Nils277. Kerbal Planetary Base Systems. url: http://forum.kerbalspaceprogram.
com/index.php?/topic/133606-kpbs/.

[9] Ninenium. NavHud - a NavBall inspired Heads Up Display. url: http://forum.
kerbalspaceprogram.com/index.php?/topic/73692-navhud/.

[10] rabidninjawombat. ExtraPlanetary LaunchPads Extended-Part Pack. url: http:
//forum.kerbalspaceprogram.com/index.php?/topic/80988-elkarb/.

[11] RealGecko. Simple Construction. url: http://forum.kerbalspaceprogram.com/
index.php?/topic/152575-sc/.

[12] RoverDude. USI Kolonization Systems (MKS/OKS). url: http://forum.kerbalspaceprogram.
com/index.php?/topic/72032-mks/.

[13] Sarbian. Module Manager. url: http : / / forum . kerbalspaceprogram . com /
index.php?/topic/50533-mm/.

[14] taniwha. Extraplanetary Launchpads. url: http://forum.kerbalspaceprogram.
com/index.php?/topic/54284-el/.

[15] taniwha. ExtraplanetaryLaunchpads/Resources/Kerbal.cfg.
[16] taniwha. ExtraplanetaryLaunchpads/Resources/Recipes.cfg.
[17] taniwha. KerbalStats. url: http://forum.kerbalspaceprogram.com/index.

php?/topic/89285-ks/.
[18] taniwha. Kethane. url: http://forum.kerbalspaceprogram.com/index.php?

/topic/119480-kethane/.
[19] taniwha. Modular Fuel Tanks. url: http://forum.kerbalspaceprogram.com/

index.php?/topic/58235-mft/.

21

[20] taniwha. Talisar Parts. url: http://forum.kerbalspaceprogram.com/index.
php?/topic/116849-tp/.

[21] TriggerAu. Kerbal Alarm Clock. url: http://forum.kerbalspaceprogram.com/
index.php?/topic/22809-kac/.

[22] Z-Key Aerospace. TAC Fuel Balancer. url: http://forum.kerbalspaceprogram.
com/index.php?/topic/139223-tacfb/.

22

