
Extraplanetary Launchpads
User’s and Modder’s Guide

Bill Currie (taniwha)

1

Introduction
Building bases and space stations in Kerbal Space Program can be fun and rewarding
on its own: they look good and allow for the production or storage of fuel and science,
but they amount to little more than outposts. One main problem with such outposts
is that when things go wrong and repairs are needed, they are highly dependent on
resupply runs from the KSC1. A bigger problem is they serve only as way stations for
grand missions: it is very difficult to use them as the origin of such missions as all the
vessels comprising the grand mission must be launched from the KSC.

Extraplanetary Launchpads (or EL for short2) gives additional meaning to planetary
bases and orbiting space stations by allowing for the construction of all manner of vessels
away from the KSC. The construction can be carried out both on the surface of any body
and in orbit. However, EL does not do anything for life support supplies (other mods
have that covered), or the expansion of the kerbal population at the base or station.

EL defines the resources3 used in the construction of vessels, and provides the parts
required to obtain and process those resources into the final product: a vessel that can
be an independent ship (or other vehicle), base, station, a module for a larger vessel, or
even individual parts4.

1Kerbal Space Center? Kerbin Space Center? Kerman Space Center? Kraken Snack Constructor?
2Just like “extraterrestrial”, “extraplanetary” is (or would be) one word, and “launchpad” is also one

word, thus in this case TLA is Two Letter Acronym.
3Other mods can define other resource that replace those defined by EL.
4Though currently a little awkwardly.

2

Contents
List of Figures 5

List of Tables 5

I. Using Extraplanetary Launchpads 6

1. Getting Started 6
1.1. Installation . 6

1.1.1. Minimal Installation . 6
1.1.2. Survey Build Support . 6
1.1.3. Recommended Mods . 6
1.1.4. Mods that support or use EL . 7

1.2. Setup . 7

2. Construction Basics 7
2.1. Resources . 7

2.1.1. Prospecting and Mining: dirt? to MetalOre 7
2.1.2. Smelting: MetalOre to Metal 8
2.1.3. Working: Metal to RocketParts 11
2.1.4. Remelting: ScrapMetal to Metal 11
2.1.5. Building: RocketParts to Rockets 11
2.1.6. Recycling: RocketParts to ScrapMetal 11

2.2. Productivity . 11
2.3. Construction Skill . 12

2.3.1. Unskilled kerbals . 12
2.3.2. Non-career modes . 13

2.4. Workshops . 13
2.4.1. Fully equipped . 13
2.4.2. Other parts . 13

2.5. Pads . 13
2.5.1. Launchpads and Orbital Docks . 13
2.5.2. Survey Stations and Survey Stakes 14
2.5.3. Micro-Pad . 14

3. Survey System 14
3.1. Survey Station . 15

3.1.1. Survey Skill . 15
3.2. Survey Site . 15

4. Designing a construction capable vessel 17
4.1. Orbital Construction . 17

3

4.2. Grounded Construction . 19
4.2.1. The Base Kraken . 20

4.3. Roughing It . 22

II. Modding Extraplanetary Launchpads 23

5. Configuration 23
5.1. Part Modules . 23

5.1.1. ELControlReference . 23
5.1.2. ELConverter . 23
5.1.3. ELDisposablePad . 26
5.1.4. ELExtractor . 26
5.1.5. ELLaunchpad . 27
5.1.6. ELNoControlSwitch . 28
5.1.7. ELRecycler . 28
5.1.8. ELSurveyStake . 29
5.1.9. ELSurveyStation . 29
5.1.10. ELTarget . 30
5.1.11. ELWorkshop . 30

5.2. Recipes . 31
5.2.1. Recipes for Building . 31
5.2.2. Recipes for Recycling . 34
5.2.3. Recipes for Converting . 35
5.2.4. Other Recipes . 37

5.3. Resource Rates . 37

6. EL API 38
6.1. Interfaces . 38

6.1.1. ELBuildControl.IBuilder . 38
6.1.2. ELControlInterface . 38
6.1.3. ELWorkNode . 38
6.1.4. ELWorkSink . 38
6.1.5. ELWorkSource . 39
6.1.6. IResourceProvider . 39

6.2. Part Modules . 39
6.2.1. ELControlReference . 39
6.2.2. ELConverter . 39
6.2.3. ELDisposablePad . 39
6.2.4. ELExtractor . 39
6.2.5. ELLaunchpad . 39
6.2.6. ELNoControlSwitch . 39
6.2.7. ELRecycler . 39
6.2.8. ELSurveyStake . 39

4

6.2.9. ELSurveyStation . 39
6.2.10. ELTarget . 39
6.2.11. ELWorkshop . 39

6.3. Vessel Modules . 39
6.3.1. ELVesselWorkNet . 39

List of Figures
1. Resource flow chart . 8
3. Orbital Dock . 17
4. Micro-Pad . 17
2. Hillside survey site, somewhere on Minmus. 18
5. Gilly Base . 24

List of Tables
1. Comparison of stock KSP LFO engines. 10

5

Part I.
Using Extraplanetary Launchpads
1. Getting Started
1.1. Installation
1.1.1. Minimal Installation

Download the zip file for the latest version via the EL forum thread[EL] and extract
its contents to KSP’s GameData directory5. Ensure that the latest version of Module
Manager[MM] is installed correctly.

Note that the minimal installation will not support survey builds.

1.1.2. Survey Build Support

In order to support survey builds, Kerbal Inventory System[KIS] is required.

1.1.3. Recommended Mods

There are several mods that improve EL:

Diamond Grid Trusses and Containers[DG] Truss and tank segments based off trun-
cated triangles.

Kerbal Alarm Clock[KAC] Keep track of when a build will be finished. Really, the
most important mod for anybody wishing to run multiple missions in parallel, and
useful even for those who run only one mission at a time.

KerbalStats[KS] Provides a means to extend kerbal attributes, but in the context of
EL it provides time and activity based experience for kerbals.

Kethane[Keth] The original ISRU solution for KSP. Provides hot-spot6 mining of
MetalOre.

Modular Fuel Tanks[MFT] Edit tank resources in the editor.

Talisar Parts[TP] High capacity spherical tanks (up to over 200m3) and various struc-
tural parts.

Kerbal Attachment System[KAS] Pipes and winches.

TAC FuelBalancer[TACFB] Easier transferal of resources.

5Ok, folder. Now get off my lawn ;)
6Areas where resource extraction is done at 100% of extractor capacity. Other areas (those covered by

the stock resource system) get 1% to 15% extraction rate.

6

1.1.4. Mods that support or use EL

Kerbal Planetary Base Systems[kpbs] Several new parts that are designed to be used
in a planetary base for the kerbals.

Pathfinder[Path] Space Camping & Geoscience.

SimpleConstuction[SC] Uses EL but stock parts.

1.2. Setup
The first time the space center scene is entered, an options window will be presented
allowing for the selection of various settings:

• Use of Blizzy’s toolbar when available.

• Creation of KAC alarms and the default action for those alarms.

• Visibility of the build resources window in the editors.

• Whether “craft hulls” are presented during build.

• Debug output for craft hulls. Generally not needed unless things go wrong in
generating a hull, then the data will be requested.

2. Construction Basics
2.1. Resources
Currently, EL uses four resources for its production chain (though the recipe system (see
section 5.2 on page 31) allows for much more complicated systems).

MetalOre Assumed to be hematite7 (but not explicitly stated as such) and thus has a
density of 5.2t/m3.

Metal Assumed to be iron (but not explicitly stated as such) and thus has a density of
7.8t/m3.

RocketParts Assumed to be sub-parts ready for assembly into actual parts, and thus
has a very low density of 0.5t/m3.

ScrapMetal The true product of any machine shop: all machine shops produce scrap
metal in various forms and efficiencies. The lumps of metal handed over to the
customer are really the left-overs from producing scrap metal. Scrap metal gen-
erally does not pack well, though better than parts, so a density of 0.8t/m3 was
chosen as an average.

2.1.1. Prospecting and Mining: dirt? to MetalOre

7A common form of iron ore.

7

It may be
worthwhile
thinking of
the stock
system pro-
viding a
means to
extract Met-
alOre from
a larger mix
of “dirt”,
while the
Kethane
system
provides
access to
rich veins of
MetalOre.

smeltingshipping

recycling remelting

prospecting

mining

working

building

MetalOre

Metal

RocketParts

ScrapMetal

Vessel

ScrapMetal

Metal

MetalOre

Metal

RocketParts

Vessel

Figure 1: Resource flow chart

In order to obtain MetalOre when away
from the KSC, one of the augers is used
to mine MetalOre from the surface of
the planet or moon. EL uses the stock
resource distribution system configured to
distribute MetalOre, so prospecting is
done as for stock’s Ore resource, but with
a focus on MetalOre instead.

Kethane and Karbonite Prior to KSP
1.0, EL relied solely on Kethane[Keth]
for its prospecting and mining, and there
was an adaptation to make EL use
Karbonite[karb] instead.

As of KSP 1.0 (EL 5.1.90) Kethane is
completely optional, but if present, will be
used on top of the stock resource system.
Scanning is quite separate, but mining is
done using the exact same augers. Mining
outside a MetalOre deposit created by
Kethane will extract MetalOre at the
rate dictated by the concentration given
by the stock system (1% to 15%), but de-
posits created by Kethane effectively pro-
vide hot-spots of 100% concentration.

The Karbonite adaptation seems to
have been mothballed, but it was mostly
a parts mod with configs for EL, so it may
still be usable.

2.1.2. Smelting: MetalOre to Metal

MetalOre is converted to Metal via
smelting. Smelting is the process of re-
ducing8 metal oxides. EL assumes Met-
alOre is Fe2O3 (the most common iron ore on Earth). Reducing Fe2O3 is a three-step
process (from Wikipedia):

Stage One 3Fe2O3 + CO → 2Fe3O4 + CO2

Stage Two Fe3O4+ CO → 3FeO + CO2

Stage Three FeO + CO → Fe + CO2

8Chemistry term, the opposite of oxidizing (or reduction vs oxidization).

8

However, this really happens all at once in a smelter so the effective process is:
3Fe2O3 + 9CO → 6Fe + 9CO2.
Fe has a molar mass of 55.845g/mol, O has a molar mass of 15.9994g/mol, so 479.0646g

of Fe2O3 will produce 335.070g of Fe. This leads to a MetalOre to Metal mass
conversion rate of 0.69942559.

In order to model the CO consumption, EL assumes that LiquidFuel is RP-1 (C12H16)
and that Oxidizer is liquid oxygen (O2). The stoichiometric equation for burning RP-1
is:

C12H16 + 16O2 → 12CO2 + 8H2O
However, rockets tend to burn rich (reduced oxidizer quantity) in order to avoid oxi-

dizing the engine, keep the engine cooler, and increase the number of lighter molecules
in the exhaust. KSP’s standard LiquidFuel and Oxidizer mix of 9:11 by volume
very closely approximates the following when LiquidFuel is assumed to be RP-1 and
Oxidizer is assumed to be liquid oxygen10 (used for 0% efficient smelting):

2C12H16 + 17O2 → 2C + 17CO + 4CO2 + CH2O + 7H2 + 8H2O
The resulting equation for 100% efficient11 smelting thus becomes:
10Fe2O3 + 2C12H16 + 17O2→ 20Fe + 24CO2 + 16H2O
C12H16 has a molar mass of 160.25544g/mol, CO2 has a molar mass of 44.0095g/mol,

H2O has a molar mass of 18.01528g/mol, C 12.0107g/mol, CO 28.0101g/mol, CH2O
30.02598g/mol, H2 2.01588g/mol. Thus the two equations become the following when
viewed as masses:

320.51088 + 543.9796 → 24.0214 + 476.1717 + 176.038 + 30.02598 + 14.11116 +
144.12224

1596.882 + 320.51088 + 543.9796 → 1116.9 + 1056.228 + 288.24448.
The mass conversion rate of MetalOre to Metal is still 0.6994255.
Smelting is assumed to consume 8.62MJ/kg of produced Metal[TMETPS].
The combustion of LiquidFuel and Oxidizer is assumed to produce 6MJ/kg. The

justification for this comes from analyzing the properties of KSP’s stock LFO engines
and noting that the Poodle (the most efficient) gets 5.9MJ/kg of LiquidFuel and
Oxidizer (see table 1 on the next page).

Thus, EL’s smelters nominally12 consume 864.49048g/s of LiquidFuel and Oxidizer
to produce 5186.94288kJ/s of heating along with the products necessary for smelting.
At 100% efficiency, they consume 1596.882g/s of MetalOre and 9627.678kJ/s of heat
while producing 1116.9g/s of Metal. Thus 100% efficiency is unobtainable as there is
insufficient heat supplied by the LFO mix. In theory, the attainable efficiency is a bit
less than 53.9%, but due to transferred resources cooling the smelter13, the maximum

90.46628367 volume (resource unit) conversion rate.
10Note that the exact ratios of the products were arbitrarily chosen but are chemically “correct” (bal-

anced), and that the inclusion of formaldehyde is the result of “Hmm, wonder if there’s a CH2O .
Oh, there is, and it does appear in partial combustion of hydrocarbons. Neat.”

11Arbitrary assumption.
12The actual rates vary with the smelter: 800g/s, 3149.8g/s and 5000g/s of LFO, with the other rates

scaled accordingly.
13And an engineering mistake in the smelter design. Some kerbals will miss out on snacks.

9

Engine Thrust (N) Isp(s) Ve (m/s) flow (kg/s) power (W) Esp (J/kg)
24-77 16k 290 2843.9 5.6 22.8M 4.0M
48-7S 20k 320 3138.1 6.4 31.4M 4.9M
aerospike 180k 340 3334.2 54.0 300.1M 5.6M
LV-1 2k 315 3089.1 0.6 3.1M 4.8M
LV-1R 2k 290 2843.9 0.7 2.8M 4.0M
LV-909 60k 345 3383.3 17.7 101.5M 5.7M
LV-T30 240k 310 3040.0 78.9 364.8M 4.6M
LV-T45 215k 320 3138.1 68.5 337.3M 4.9M
mainsail 1500k 310 3040.0 493.4 2.3G 4.6M
Mk55 120k 305 2991.0 40.1 179.5M 4.5M
poodle 250k 350 3432.3 72.8 429.0M 5.9M
SSME 1000k 315 3089.1 323.7 1.5G 4.8M
skipper 650k 320 3138.1 207.1 1.0G 4.9M
twin-boar 2000k 300 2942.0 679.8 2.9G 4.3M
rhino 2000k 340 3334.2 599.8 3.3G 5.6M
mammoth 4000k 315 3089.1 1294.9 6.2G 4.8M
rapier 180k 305 2991.0 60.2 269.2M 4.8M
vernor 12k 260 2549.7 4.7 15.3M 3.3M

Table 1: Comparison of stock KSP LFO engines.
Thrust and Isp are from the config files. Ve (exhaust velocity) is Isp ∗ g0 (9.8066). Flow
is thrust

Ve
. Power is 1

2 thrust ∗ Ve. Esp (energy per kg) is power
flow or 1

2V
2
e .

10

Some of you
may have
had spotty
results recy-
cling entire
vessels: that
is inten-
tional, and
there is a
way around
it (see if you
can guess).

efficiency appears to be about 40%.

2.1.3. Working: Metal to RocketParts

Metal is converted to RocketParts by working it. Currently, this is done using either
the workshop (big blue part in Utilities), or the workbench (tower with little platforms
in Pods). Unfortunately, the process is quite bogus: Metal is used for for everything,
and the conversion speed is probably too fast. However, the efficiency (0.7 by mass)
is reasonable: it is the estimated average of various means of production: cutting cast
iron parts leads to high efficiency, but cutting lumps of steel can lead to fairly low
efficiency depending on just how much metal needs to be cut away. At the same time,
ScrapMetal is produced at a rate of 0.295 by mass (some scraps are lost).

2.1.4. Remelting: ScrapMetal to Metal

ScrapMetal can optionally be remelted to Metal using a smelter. The process is
lossless (conversion rate of 1), the loss (very small) occurs when producing the Scrap-
Metal. Storing and reclaiming ScrapMetal is fully optional: running out of storage
will not stop Metal to RocketParts conversion.

2.1.5. Building: RocketParts to Rockets

Building is done by the launchpads, orbital dock, or survey station (or just “pads” for
short). The rate is governed by the overall vessel productivity (measured in kerbal-
hours (Khr)) shared amongst active pads. Each ton of rocket (dry-mass) requires five
kerbal-hours (i.e. 5Kh/t).

There have been discussions that EL’s build rate is too high compared to Kerbal Con-
struction Time, but those arguing that side were unaware that RocketParts represent
components to be assembled into the parts visible in KSP. The building process is re-
ally just the kerbals putting those components together. It is the smelting and working
stages that are unrealistically fast.

2.1.6. Recycling: RocketParts to ScrapMetal

Recycling is done on a part-by-part basis. When a part is recycled, it is first drained
of any resources it contains (e.g., LiquidFuel or Oxidizer), and those resources will
evaporate, be broken down into other resources to be reclaimed, or transferred and thus
reclaimed depending on the resource (most will be transferred). Once the part has
been drained, it will be broken down from RocketParts to ScrapMetal and the
ScrapMetal reclaimed.

Of course, any reclaimed resource needs storage space. Otherwise, it will be lost.

2.2. Productivity
All kerbals have a base productivity score determined by their stupidity, courage, and
bad-ass characteristics. The more stupid a kerbal is, the less that kerbal will contribute

11

to the workshop’s (and thus the overall vessel’s) productivity, and more courageous
kerbals will, in general, contribute less than less courageous kerbals, though bad-ass
kerbals complicate the relationship. It is entirely possible for a kerbal to have negative
productivity.

If the KerbalStats[KS] mod is installed, then the amount of time a kerbal has spent
in certain workshops (currently only EL’s blue workshop (afaik)) improves the kerbal’s
productivity.

A workshop’s productivity is the sum of the productivities of all kerbals working in
that shop. A vessel’s productivity is the sum of the productivities of all workshops
in that vessel. If the vessel’s productivity is greater than zero, then construction will
progress. Negative productivity does not cause production to become destruction, in-
stead it causes a productivity deficit that must be overcome by better construction
kerbals before construction will proceed.

2.3. Construction Skill
Kerbals with the construction skill (by default, engineers, but hereon referred to as
construction kerbals) are the cornerstone of workshop productivity. However, their
space-faring (stock) experience affects their productivity greatly.

0 stars The kerbal can work in a fully equipped workshop.

1 star The kerbal can work in any workshop.

2 stars The kerbal is always productive in a fully equipped workshop (base productivity
still matters, but to get negative productivity, the kerbal would have to have
infinitely negative base productivity).

3 stars The kerbal is always productive in any workshop.

4 stars The kerbal enables skilled workers in any workshop (a 4-star construction kerbal
in an under-equipped workshop allows 0-star construction kerbals to contribute).

5 stars The kerbal enables unskilled workers in a fully equipped workshop (a 5-star
construction kerbal in a fully equipped workshop allows any kerbal, even those
without the construction skill, to contribute).

2.3.1. Unskilled kerbals

Unskilled kerbals cannot work unless a 5-star construction kerbal is present in the same
workshop, and the workshop must be fully equipped, but if the kerbal’s experience level
is 2 or less, and the kerbal’s base productivity is negative, the kerbal will detract from
the workshop’s productivity.

12

For role-
play pur-
poses, “fully
equipped”
can be
thought of
as the work-
shop having
all the nec-
essary tools,
and the
productivity
factor as
being the
quality of
the tools or
the level of
automation
available.

2.3.2. Non-career modes

In sandbox (and science?) mode, all kerbals are level 5, so there will be no negative
contributions, and if there is at least one construction kerbal in the workshop, then all
kerbals of sufficient ability will contribute.

2.4. Workshops
Workshops, too, affect productivity. All workshops have a productivity factor that is
multiplied by the sum of the productivities of the kerbals working in that shop. The
resulting productivity is then passed to the vessel.

2.4.1. Fully equipped

Fully equipped workshops are those with a productivity factor of 1.0 or more, or specially
marked workshops with lower productivity factors. EL’s blue workshop, and the rocket
workbench are both fully equipped workshops.

2.4.2. Other parts

All stock crewed parts act as under-equipped workshops. In addition, all crewed com-
mand pods, including those from other mods, act as under-equipped workshops. Many
base-building mods (eg, KPBS[kpbs], Pathfinder[Path]) provide workshops (refer to
those mods for details).

2.5. Pads
All construction is done at “pads”, whether the pad is an orbital dock, a launchpad,
a survey site (marked out using survey stakes and managed by a survey station), or a
micro-pad.

Initiating construction is the same for everything: open the build window (via either
the toolbar button (blizzy’s toolbar[TB], or the stock app button), or the Show UI
button in the PAW14), select the craft to build, and press the Build button. Between
selecting the craft to build and pressing the Build button, the required and optional
resources for the build will be displayed in a preview. There is no need to have all the
required resources on-hand when beginning the build: if they run out during the build,
the build will stop until the resources become available and then automatically resume.
The resources can become available via supply runs or local processing.

2.5.1. Launchpads and Orbital Docks

Technically, there is no difference between a launchpad and an orbital dock: they operate
exactly the same way. The difference comes in the physical form of the parts: launchpads
are optimized for grounded operation, and the orbital dock is optimized for orbital
operation.
14Part Action Window (right-click menu)

13

A stake’s
name de-
faults to the
name of the
kerbal who
planted it
with “Base”
appended.
Thus if
Valentina
plants a
stake, it will
be named
Valentina
Kerman
Base.
Thus, when
creating a
site consist-
ing of more
than one
stake, it is
easiest to
have only
one kerbal
do the stake
planting.
Also, if
multiple
local sites
are desired,
getting a
different
kerbal to
plant the
stakes for
each site
will make it
easier.

2.5.2. Survey Stations and Survey Stakes

Survey stations use local survey sites to specify the location and orientation of the built
vessel. Survey sites are sets of one or more survey stakes with the same name and within
range (200m) of each other.

2.5.3. Micro-Pad

The micro-pad is a single-use construction point. When the build is finalized, the pad
self-destructs and the build is attached to the parent vessel as if the build had been placed
there in the editor (VAB or SPH). Also, the micro-pad can be carried on a kerbal’s back
using KIS[KIS].

The orientation and position of the build is controlled by the combination of the
orientation and position of the micro-pad, and the automatically selected attach node
of the root part. The colored diamonds on the micro-pad indicate the orientation of the
root part when its bottom node is selected (red = +X, blue = +Z, cyan = -X, yellow =
-Z15. It is important to remember that when the micro-pad is facing up, the root part’s
selected node will be facing down, having been rotated around the part’s Z axis.

The micro-pad automatically selects the attach node of the root part by searching for
the first available (unattached) node. First the bottom node is checked, then the top
node, then any remaining nodes in the order they are found. Thus a small amount of
control over which node is selected can be obtained simply by attaching parts to the
undesired nodes.

3. Survey System
When landed, orbital docks can be awkward for building as they tend to be on top of
the building vessel (especially awkward for building rovers as getting the rover to the
ground can be an issue), and launchpads are highly sensitive to ground conditions, and
and have their own issues when building large vessels. Also, they provide no flexibility
in placement or orientation of the build.

EL’s survey system greatly eases the seeding (or even complete build-out) of bases,
and works equally well for building ships and other vessels. However, it does have one
disadvantage: any optional resources (liquid fuel, oxidizer, electric charge, etc) will not
be transferred: the build will be empty of such resources (freedom is not free), but as
KIS[KIS] is required to place the stakes, and KAS[KAS] is almost always installed with
it, this disadvantage should be only minor16.

The survey system consists of two parts17: the survey station, and the survey site.
The survey station (a re-purposed hitchhiker can) is used to keep track of the survey

15Hopefully the colors are distinct enough that any suffering from colorblindness can distinguish at least
one diamond. The pad’s default orientation in the VAB is such that red (+X) points to the VAB
door, blue (+Z) points to the north wall, cyan (-X) to the west and yellow (-Z) to the south.

16It can, however, lead to good entertainment: [HMV1]
17If you’re thinking KSP parts, then it’s three: survey station, survey stake, and mallet.

14

sites and do the actual building (it serves the same purpose as the orbital dock or a
launchpad, but must be landed), and must be flown down to the surface in the vicinity
of where the builds will occur. The survey site is ephemeral: it is marked out by one or
more survey stakes and is used to specify the location and orientation of the build.

3.1. Survey Station
3.1.1. Survey Skill

Kerbals with the survey skill (by default, pilots, but hereon referred to as survey ker-
bals) affect the range of a survey station according to their stock experience level. The
experience level of the most skilled survey kerbal in the survey station is used. However,
even an unskilled kerbal can man a survey station, and an unmanned survey station is
still operational.

unmanned 20 meters.

unskilled 50 meters.

0 stars 100 meters.

1 star 200 meters.

2 stars 400 meters.

3 stars 800 meters.

4 stars 1600 meters.

5 stars 2000 meters.

Note that the range is from the survey vessel’s center of mass to the nearest stake of the
survey site, but stakes may be separated by up to 200 meters18.

3.2. Survey Site
Stakes have two modes with seven settings in each mode (default is Direction:Origin):

Direction these are used to control the orientation of the build.
Origin used to mark the location above which the build’s root part will be placed,

and also forms the reference point for other direction stakes that aren’t in
pairs.

-X and +X used to specify the lateral (port (-X) and starboard (+X)) axis of the
build (both VAB and SPH). If both -X and +X are used, then the origin is
is ignored, otherwise the axis runs from -X to origin or origin to +X.

18This is a bit of a misfeature: the range should be from the survey station part and the maximum
separation of the stakes should be dependent on the skill as well.

15

The VAB
orientation
really is
weird.

-Y and +Y used to specify the "vertical" (nadir (-Y) and zenith (+Y)) axis of
the build (relative to the floor in the VAB or SPH). If both -Y and +Y are
used, then the origin is is ignored, otherwise the axis runs from -Y to origin
or origin to +Y. NOTE: not recommended, very advanced usage.

-Z and +Z used to specify the ventral(+Z)/dorsal(-Z) (VAB) or fore(+Z)/aft(-Z)
(SPH) axis of the build. If both -Z and +Z are used, then the origin is is
ignored, otherwise the axis runs from -Z to origin or origin to +Z.

* If none of the axis direction stakes are used, then the default orientation is such
that the build’s +Y axis is the local up, +X axis points east, and +Z points
north (same as on the KSC launchpad).

* If the axes marked out by the stakes are not perfectly orthogonal, then the build
will be oriented such that the errors are balanced.

Bounds these are used to control the placement of the build based on its bounding box
rather than its root part.
Origin used to mark the location of the root part along any axis that has not been

bound.
-X and +X used to mark the lateral (port (-X) and starboard (+X)) edges of the

build. If only one of -X or +X is used, then that edge of the build will be
exactly on that stake, otherwise the the X-axis center of the build’s bounding
box will be centered on the midpoint between the two stakes.

-Y and +Y used to mark the "vertical" (nadir (-Y) and zenith (+Y)) edges of the
build. If only one of -Y or +Y is used, then that edge of the build will be
exactly on that stake, otherwise the the Y-axis center of the build’s bounding
box will be centered on the midpoint between the two stakes. NOTE: use
of the +Y bounds stake is not recommended unless you know what you are
doing.

-Z and +Z used to mark the ventral(+Z)/dorsal(-Z) (VAB) or fore(+Z)/aft(-Z)
(SPH) edges of the build. If only one of -Z or +Z is used, then that edge
of the build will be exactly on that stake, otherwise the the Z-axis center of
the build’s bounding box will be centered on the midpoint between the two
stakes.

* Bounds stakes and direction stakes work together: any unbound axis of the build
slides along that axis of the reference frame created by the direction stakes (or the
default frame if no direction stakes are used).

* There is actually only one origin stake: there is no difference between a bounds origin
stake and a direction origin stake. The appearance of there being two origin stakes
is due to the overly simple controls.

* If multiple stakes of the same type+setting have been placed, then they will be aver-
aged together to form a virtual stake of the same type+setting. This can be very

16

useful with multiple origin stakes to avoid the build clipping into the stake when
the lowest part of the build is directly below the root part.

* If no origin stakes have been placed, then the average of all other stakes is used as the
origin point.

* The actual location of the stakes is about 19cm above the ground.

* If no Y bounds stake has been placed, then the origin acts as an implicit -Y bounds
stake (otherwise almost all builds would spawn in the ground).

4. Designing a construction capable vessel
4.1. Orbital Construction

Figure 3: Orbital Dock

Orbital construction is probably the easiest to get going as all that is
required is a supply of RocketParts, an orbital dock, some qualified
construction kerbals, and somewhere for them to work. This means
that only two parts need to be added to the design of a station that
has crewed command pods or any stock crewed part19: a reasonably
sized RocketParts container, and either the orbital dock or the micro-
pad. When extending an existing station, a suitable docking port would
be required as well, and means to get the “construction unit” to the
station. However, if the micro-pad is used, then the micro-pad needs
to be attached to the station somewhere using KIS[KIS]. In fact, the
micro-pad can be an excellent way of attaching an orbital dock to a
station.

Figure 4: Micro-Pad

It can, however, be the most difficult to maintain due to the need for
supplies to be flown to the station. That said, maintaining an orbital
construction station can be quite interesting as there are a number of
options for feeding RocketParts into the orbital dock’s ravenous maw,
each with additional design requirements for the station.

• Firstly, and most simply, RocketParts can be flown up from
a nearby, or even not so nearby, production base20. The only
additional requirement for the station is an available docking port,
but a station with no docking ports is of rather limited use, so
this requirement is generally not too troublesome (though having
enough docking ports on a station can be tricky at times).

• Secondly, Metal can be flown to the station and locally processed
into RocketParts. Along with an available docking port, this

19there are mods that supply suitably configured crewed parts
20The KSC counts as a production base as all EL resources can be loaded onto a vessel at launch time

via tweakables.

17

Fi
gu

re
2:

H
ill

sid
e

su
rv

ey
sit

e,
so

m
ew

he
re

on
M

in
m

us
.

T
hi

s
is

on
e

po
ss

ib
ili

ty
fo

r
pl

ac
in

g
st

ak
es

fo
r

bu
ild

in
g

a
la

rg
e

st
ru

ct
ur

e
on

th
e

sid
e

of
a

hi
ll.

Fr
om

le
ft

to
rig

ht
,t

he
re

’s
a

-Y
Bo

un
ds

st
ak

e,
a

+
X

D
ire

ct
io

n
st

ak
e,

a
+

Z
Bo

un
ds

st
ak

e
w

ith
a

+
X

Bo
un

ds
st

ak
e

hi
di

ng
be

hi
nd

it,
a

fla
g

an
d

ke
rb

al
(n

ot
re

le
va

nt
to

th
e

sit
e)

,a
nd

ne
ar

th
e

fa
rr

ig
ht

la
un

ch
cl

am
p,

an
O

rig
in

st
ak

e
(d

ire
ct

io
n,

bu
tb

ou
nd

sw
ou

ld
ha

ve
th

e
sa

m
e

eff
ec

t)
.

A
lth

ou
gh

th
e

to
p

of
th

e
st

ru
ct

ur
e

is
no

t
di

re
ct

ly
vi

sib
le

,i
t

is
ho

riz
on

ta
l.

18

The rocket
workbench
can be man-
handled into
position by
two kerbals
using KIS.

method requires a means of converting Metal to RocketParts.
This can be done using either the workshop or the rocket work-
bench, but since even the rocket workbench can give a significant
boost to production speed, the only real disadvantages are the rel-
evant part needs to be either flown up to the station and docked
or built at the station and maneuvered into a convenient location,
and the increased power requirements. A minor disadvantage is
the conversion of Metal into RocketParts produces Scrap-
Metal. Normally, the ScrapMetal is simply thrown away, but
the next solution takes care of that.

• Thirdly, if Metal to RocketParts production is already avail-
able on the station21, a smelter can be added to the station al-
lowing MetalOre to be flown in and processed into Metal.
While this does significantly increase the fuel requirements of the
station, the smelter is actually dual-use: not only can it convert
MetalOre into Metal, but it can convert ScrapMetal into
Metal, resulting in very low production losses. As an added
bonus, the smelters have a small amount of storage for the three
resources.

• Fourthly, and finally, a recycling bin can be added to the sta-
tion. EL’s recycling bins do not look like much, but they are
ravenous maws that eat vessels of any size (except asteroids, but
including unfortunate kerbals) and spit out resources. Most re-
sources, except Ablator and SolidFuel, stored in tanks will be
reclaimed as-is without loss, and the hull material will be recy-
cled into ScrapMetal. For best results, the station needs large
quantities of storage and a full production chain. The biggest ad-
vantage of using a recycling bin is unmanned22 supply ships can
be flown into the recycling bin and recycled. If there is sufficient
storage on the station, then all remaining fuel and any stored re-
sources will be automatically transfered to the station, and the hull
of the supply ship will go towards the next construction project.
Unfortunately, if there is insufficient storage for any resource, the
the excess of that resource will be lost.

4.2. Grounded Construction
While more difficult to get going due to the need to fly to the location and land safely,
grounded construction can be much easier to maintain as the site of the construction
base can be chosen for optimal resource extraction. Thus once production facilities (as

21Or is included in the same module as the smelter.
22Or manned by very brave pilots.

19

described in the orbital construction section) are in place, the base can be self-sufficient
for a very long time.

The main difference between orbital construction and grounded construction is that
gravity can make getting built vessels off the pad rather awkward. Thus, instead of a
launchpad, though launchpads can have their advantages (such as resource transfer), the
base can be equipped with a survey station, a supply of survey stakes, a mallet to drive
the stakes, and a KIS[KIS] container in which to store the stakes and mallet. As KIS is
required for the survey parts to be available, the container should not be a problem23.

4.2.1. The Base Kraken

One thing that makes base building particularly difficult is bases have a tendency to
slide around on the ground, and even jumping into the air and possibly self destructing.
None of this is helped by the difficulty of finding level ground anywhere but the flats
of Minmus, and Minmus is so small that despite the flats being perfectly “flat”24, the
curvature is such that large sprawling bases have to bend to maintain contact with
the ground, but generally will not due to Minmus’ low gravity. Instead, they often tip
slightly.

To solve the problem of bases sliding around, and in attempt to prevent them leaping
into the air, various mods have implemented solutions involving attaching the base parts
to the ground25. However, stock KSP provides its own solution that EL’s survey system
enables: launch clamps. While launch clamps do have their disadvantages26, they can
turn a site that is untenable due to steep terrain into a stable and highly productive
base: the root part is always level27 with respect to the survey site’s origin.

The above, both the ground anchoring done by other mods and the use of launch
clamps, helps a lot in preventing bases from sliding around. Unfortunately, not so much
when it comes to actually preventing a kraken attack on scene load. In fact, they can
make things worse, for a rather counter-intuitive reason: the way KSP handles vessels
going on rails (yes, on, not off). The reason these attempts to solve the base kraken can
make things worse is that instead of the base being thrown away from the ground, it
can be torn apart by the sometimes very violent forces that are attempting to throw the
base.

As for KSP’s handling of vessels going on rails...
KSP records the root-part relative positions and orientations of each part of the vessel.

Normally, these never change28.
When a vessel goes on rails, KSP snaps all parts back to their recorded positions and

23Other mods might provide alternative “stakes” with a different planting mechanism thus removing the
need for KIS.

24Flat Minmus Society, anyone?
25Really, just to local space, but that’s a minor technical PhysX detail.
26The base can wind up quite high up from the ground.
27Unless a Y direction stake is used.
28Robotics parts do change them, and the vessel suffers for it over several save-load cycles.

20

orientations. This is readily seen when a wobbly wet-noodle rocket goes on rails29: the
rocket snaps straight.

For a grounded vessel, there are always sagging parts (some more, some less: depends
on local gravity, part mass, joint spring strength30, how far the part is from a more
securely supported part, etc etc). Obviously, the sagging causes flexing. Thus when
going on rails, the parts are snapped back to their recorded root-relative positions and
orientations.

It is the position (and orientation) of the root part that determines the vessel’s position
etc when going on rails, and the vessel’s position and orientation dictates the root part’s
position and orientation when going off rails.

Thus, when a ground base’s root part sags, even though it may not look it, the whole
base sags: when the base goes on rails, the base’s location is determined by the root
part, and all the supporting structure is snapped into position relative to that, resulting
in the supporting parts being forced into the ground. Then, when the base goes off
rails, the colliders of the support parts are in the ground and PhysX31 forces them out
resulting in possibly extremely violent forces acting on the base, possibly throwing it
away from the ground or even tearing the base apart.

Fortunately, the solution lies in the very cause of the problem, and is quite simple to
implement.

• Keep the base segment containing the root part very light. This means no storage
containers for anything massive.

• Give the root segment solid support such that it will not sag or even tilt. This
is where the use of launch clamps really helps: they provide the needed support
before physics is applied to the base.

• Keep massive storage in adequately supported separate base segments, connected
to the root segment via relatively flexible lightweight connectors. The light weight
prevents the connectors weighing excessively on the root segment, and the flexi-
bility allows the massive segments to sag without dragging the root segment down
with them. This is not a problem, and is even desirable: when the base goes on
rails and KSP snaps the parts into position, the base segments will be snapped
away from the ground instead of into it.

• Ensure that the root part of the base does not change.

The last is actually easier than it may sound: KSP has a priority system for determining
which vessel is the “mother ship” (thus which root part remains root after coupling)
when two vessels dock.

29ie, entering time-warp, assuming time-warp can be entered and is not blocked by “vessel is under
acceleration”

30Not breaking strength.
31This is not a bug in KSP, Unity, or PhysX: no physics engine likes interpenetrating colliders, and most

produce very non-physical forces in order to separate the colliders.

21

vessel type Base > Station > Plane > Ship > Lander > Rover > Relay > Probe >
Space Object (asteroid) > Debris.32

relative mass The vessel with the greater mass becomes the “mother ship”. For other-
wise identical ships, resource loads will make a difference.

vessel id While the order may appear random, it will be consistent, but the mass toler-
ance is pretty tight, so this is pretty rare.

Thus, if the root segment is made a base early on, it should remain the root throughout
the life of the base unless the base is connected to a more massive base (at the time of
connection).

4.3. Roughing It
NOTE: this section is out of date as it is relevant for when smelters required only
ElectricCharge and not LiquidFuel and Oxidizer. However, it should still serve
as inspiration.

This is grounded construction the hard way33. The absolute minimum is flown to a
site and the first things constructed are the modules needed to sustain construction.

Parts and resources to be flown in:

Suvery Station Needed to do the building on the marked site. This doubles as a work-
shop, though productivity is poor.

Survey Stakes Needed to mark where to build.

Mallet Needed to drive the stakes.

RocketParts Only a very small quantity is needed: 3.5328t is the minimum, though a
little more is recommended.

KAS[KAS] Pipe Connectors Needed to attach the build modules to allow resource
transfer.

KIS[KIS] Screwdriver While the wrench may be sufficient for attaching pipe con-
necters, the screwdriver is more versatile.

Modules to be built first:

Tiny Auger 0.5328t This is the smallest auger supplied by EL. Needed to extract Met-
alOre.

Tiny Smelter 1.5t This is the smallest smelter suppllied by EL. Needed to convert Met-
alOre to Metal.

32Docking a station to a base... neat trick.
33My preferred way.

22

Rocket Workbench 1.5t While this is needed for converting Metal to RocketParts, it
is also a fully equipped workshop with room for four kerbals. Once this is built,
construction kerbals can be moved from the survey station to the workbench,
significantly increasing productivity and thus allowing later builds to progress at
a faster rate.

Once the required modules have been built, base production can go into full swing,
even the construction of larger resource production chain, including recycling and the
full-sized workshop.

Part II.
Modding Extraplanetary Launchpads
5. Configuration
5.1. Part Modules
For the most part, EL places no restrictions on the models used for parts using EL’s
module, so unless otherwise stated, models are completely free-form as far as EL is
concerned.

5.1.1. ELControlReference

Allows the part to become a control reference (“Control From Here” in the part’s PAW).
Also provides a “Toggle Reference” action group that saves the previous control reference
when becoming the reference and returns the vessel to the previous reference when
toggled again.

Model Requirements The model’s mesh needs an emissive material with _EmissiveColor
set with appropriate RGB values. The alpha value is used for turning the emission on
and off as a status indicator. The part’s root game object is used as the reference trans-
form consistent with command pods and docking ports, so the model should be shaped
appropriately.

Part Requirements None

Module Fields None

5.1.2. ELConverter

Consumes a set of input resources to produce a set of output resources. An EL converter
uses a converter recipe (see 5.2.3 on page 35) to specify the inputs and outputs while

23

Fi
gu

re
5:

G
ill

y
Ba

se
T

he
ba

se
st

ar
te

d
w

ith
ju

st
a

tin
y

se
ed

la
nd

er
,b

ut
ev

en
tu

al
ly

flo
ur

ish
ed

in
to

a
pr

od
uc

tiv
e

ba
se

...
un

til
th

e
ke

th
an

e
su

pp
ly

ra
n

ou
t

:/

24

Note that
KSP’s ther-
mal data in
the PAW
does not di-
rectly show
the effects
of resource
transfer
on the
part’s tem-
perature,
so there
may be
significant
thermal flux
despite the
temperature
being fairly
stable.

controlling the rate of flow of the resources specified by the active input recipe and
distributing the recipes specified by the active output recipe. The active input and
output recipes are selected by the current efficiency of the converter, and may be a
blend between two specified recipes. The efficiency of the converter is either fixed, or
determined by the temperature of the converter part.

ELConverter subtracts the total input heat from the part and adds the total output
heat to the part (use negative heats to have heating associated with input ingredients
and cooling with output ingredients).

If an efficiency curve34 has been specified, then the converter’s efficiency is determined
by the part’s internal temperature (otherwise the efficiency is constant). The converter’s
efficiency is then used to bake the converter recipe into a specific conversion recipe.

Once the specific conversion recipe has been obtained, ELConverter then bakes that
recipe using the current mass flow rate. The current mass flow rate is the specified rate
of the converter scaled by the relative mass of the active input recipe compared to the
smallest mass input recipe in the converter recipe. This keeps the mass flow of certain
resources constant while varying the flow of others appropriately35 when suitable ratios
are specified. The mass flow rate of the output recipe is always the same as that of the
input recipe36.

Model Requirements None

Part Requirements None. However, it is strongly recommended to use appropriate
thermal settings for converters that use heat. In particular, skinInternalConductionMult
and heatConductivity should be adjusted to provided sufficient insulation when keep-
ing the part hot is necessary.

Module Fields

EVARange Adjust the range (in meters) from which an EVA kerbal can activate or
deactivate the converter. Default is 1.5m.

ConverterRecipe The name of the converter recipe to use. Required.

Rate The base mass flow rate of the converter, in kg/s. Defaults to 0. The base mass
flow rate is that of the smallest mass input recipe in the converter recipe.

efficiency Specify the efficiency/temperature curve of the converter. Defaults to con-
stant 1.0 (100%). If a single efficiency entry is given, then it specifies a constant
efficiency and is of the form efficiency = 0.9 (90%). If multiple efficiency
entries are given, then they form keys in a piece-wise linear “curve”. Each entry is

34For certain values of “curve”: it’s piece-wise linear.
35For example, in a smelter, LiquidFuel and Oxidizer flow at a constant rate, while MetalOre is not

consumed at all at 0% efficiency, but is consumed at the maximum rate at 100%. Thus the actual
mass flow rate might vary from 864.49048g/s to 2461.37248g/s.

36Conservation of mass.

25

of the form efficiency = temp, eff where temp is the part’s internal tempera-
ture in Kelvin and eff is the converter’s efficiency at that temperature. Note that
the keys need to be specified in ascending order of temperature and eff should
be between 0.0 and 1.0 (inclusive)37. For temperatures outside the range of the
curve, the nearest key is extrapolated with a constant efficiency.

5.1.3. ELDisposablePad

Special one-shot launchpad that replaces itself with the built vessel, attaching the built
vessel to the vessel owning the pad.

Model Requirements The only requirement is the model provides a transform with the
up axis (positive Y-axis in KSP/Unity, Z-axis in Blender) pointing away from where
the spawned vessel will be as it will be used to align the selected attach node of the
vessel’s root part. This is the opposite direction of the transform used by ELLaunchpad.

Part Requirements None.

Module Fields

SpawnTransform Specifies the model transform to be used as the launch transform.
Optional, but using a spawn transform makes the virtual attach node independent
of the part’s transform.

PadName Specifies the name of the launchpad. Note that this is editable by the user
both in the editor (VAB/SPH) or in flight.

Operational Persistent backing for ELControlInterface.canOperate. Defaults to true.

5.1.4. ELExtractor

Extracts resources from the environment. Note that ELExtractor works with both
the stock resource system and with Kethane (auto-detected if installed). Can (with a
little work38) be extended to support other resource providers. All supported providers
are treated equally in that the amount of resource extracted from a provider is based
on that provider’s contribution to the available resource at the location of extractor
part’s ground-hit location. For example with Kethane installed, EL’s auger will extract
MetalOre from a Kethane deposit at a rate slightly lower than specified by Rate in
the module files because the stock resource system will provide a certain amount (based
on concentration) as well, resulting in the total rate of extraction being as specified, but
if the auger misses a Kethane-based deposit, the extraction rate will be determined by
concentration multiplied by the specified rate.

37No checking is performed, so expect rhinodaemons should this rule be broken.
38Currently, this would require modifying EL’s source to search for implementers of IResourceProvider

instead of simply adding the stock and Kethane (if installed) providers.

26

Model Requirements ELExtractor requires the model to have a head transform (goes
into the ground) and a tail transform (does not go into the ground). The transforms
are used to do a physics ray-cast to determine both whether the extractor has ground
contact and the exact location of that contact. The head transform must be outside any
colliders in order to allow it into the ground (visual mesh that penetrates the ground
poses no problem). The tail transform may be either inside or outside any colliders, but
inside is recommended to ensure that it cannot go into the ground. The transforms may
be animated: the ray-cast is performed each frame.

Part Requirements None.

Module Fields

EVARange Adjust the range (in meters) from which an EVA kerbal can activate or
deactivate the extractor. Default is 1.5m.

ResourceName The name of the resource to extract. Required.

Rate The flow rate of the extractor, in u/s (resource units/second). Defaults to 0.

flowMode How the extracted resource is distributed through the extractor vessel. De-
faults to ALL_VESSEL.

HeadTransform The name of the model transform used as the target of the ray-cast
used to detect ground contact. This is the point of the model that needs to be in
the ground for the part to be considered in contact with the ground.

TailTransform The name of the model transform used as the source of the ray-cast used
to detect ground contact. This is the point of the model that needs to be out of
the ground for the part to be considered in contact with the ground.

INPUT_RESOURCE{} Note that this is a node. This is as per the stock resource ex-
traction module (ELExtractor is derives from BaseDrill, so many of BaseDrill’s
fields and nodes are relevant).

5.1.5. ELLaunchpad

Builds complete vessels attached (pseudo-docked) to the current vessel. Allows post-
build resource transfer without any extra fuss. Supports building both landed or in
orbit.

Model Requirements No requirements, but it is highly recommended that the part
has plenty of free space “above” (positive Y-axis in KSP/Unity, Z-axis in Blender) the
launch transform.

Part Requirements None.

27

Module Fields

SpawnHeightOffset Specifies the distance in meters above the launch transform of the
lowest point of the spawned vessel. This is most useful when the model does not
have a specific spawn transform. Defaults to 0.0m.

SpawnTransform Specifies the model transform to be used as the launch transform.
Optional, but using a spawn transform allows finer control over the launch position
than that afforded by SpawnHeightOffset, and also allows the orientation to be
specified. If not specified, the model’s root transform will be used as the launch
transform (setting SpawnHeightOffset is highly recommended, but not as highly
as having a spawn transform).

PadName Specifies the name of the launchpad. Note that this is editable by the user
both in the editor (VAB/SPH) or in flight.

Operational Persistent backing for ELControlInterface.canOperate. Defaults to true.

5.1.6. ELNoControlSwitch

Resets the vessel’s control reference to what it was before a kerbal boards the external
command seat. Used by the rocket workbench to prevent the vessel getting weird control
references39.

Model Requirements Somewhere for a kerbal to sit.

Part Requirements At least one KerbalSeat module.

Module Fields None.

5.1.7. ELRecycler

Destroys anything it touches (including unfortunate kerbals), reclaiming what resources
it can. Implements ELControlInterface.

Model Requirements The only requirement is the recycle field. The recycle field must
be a trigger collider and should (must?) not touch any other collider.

Part Requirements None.

39Imagine how annoying this can be when using SAS hold option on a bendy station. Now imagine the
motivation for creating this part module.

28

Module Fields

RecycleField_name Specifies the name of the transform for the recycle field collider.
Defaults to “ReycleField”.

RecycleRate Specifies the recycling rate in tons/second. Defaults to 1.0t/s.

Operational Persistent backing for ELControlInterface.canOperate. Defaults to true.

5.1.8. ELSurveyStake

Marks locations for survey station. In the current implementation, a stake must be the
only part in the vessel for the survey station to recognize it.

Model Requirements None except any required by KIS[KIS] for ground attachment.

Part Requirements As the survey system will not look at vessels with more than
one part to check for the ELSurveyStake module, the part should be configured to be
ground attached using KIS[KIS]. However, parts designed to be dropped via staging or
decoupling will work, too, so long as the resulting vessel consists of only the one part.

Module Fields None.

5.1.9. ELSurveyStation

Builds complete vessels at locations marked out using survey stakes (parts with the
ELSurveyStake module). Does not allow post-build resource transfer (freedom is not
free), but as KIS[KIS] is required to place the stakes, and KAS[KAS] is almost always
installed with it, survey stations are probably the preferred tool for landed operations.
Implements ELControlInterface.

Model Requirements None.

Part Requirements No requirements, but as kerbals improve its range, having crew
capacity (crewCapacity > 0 or KerbalSeat modules) is recommended.

Module Fields

StationName Specifies the name of the survey station. Note that this is editable by the
user both in the editor (VAB/SPH) or in flight.

Operational Persistent backing for ELControlInterface.canOperate. Defaults to true.

29

SiteRanges Comma separated list of skill based ranges (in meters) for the survey station.
If not provided, the defaults will be used. Excess ranges are ignored, insufficient
ranges result in unspecified ranges being left as default. Zero or negative ranges
leave that range at the default value. Errors simply abort the processing of the
list and are equivalent to the list being short (but a error is sent to KSP.log).

5.1.10. ELTarget

Allows a part to be targeted. Includes orientation so it works with any docking alignment
mod (DPAI[DPAI], navball[NBDOCK], and navhud[NAVHUD] are known to work).

Model Requirements None.

Part Requirements None.

Module Fields

TargetTransform Specifies the model transform to be used as the target. If not specified
(the default), the model’s root transform will be used.

TargetName String to be added after the host vessel’s name when set as target. Defaults
to “Target”.

5.1.11. ELWorkshop

Collect productivity from kerbals in the part. Works with either normal parts with crew
capacity or command chairs.

Model Requirements None.

Part Requirements The part must have some crew capacity. This can be via either
the part’s crewCapacity field, or KerbalSeat (stock KSP) modules, or both. Note that
parts may have multiple KerbalSeat modules on them (eg, EL’s Rocket Workbench).

Module Fields

ProductivityFactor Specifies the multiplier for calculating kerbal productivity. Must
be greater than 0. All workshops with ProductivityFactor greater than 1.0 are
considered to be fully equipped (ie, even 0-star kerbals with the construction skill
can contribute). Defaults to 1.0.

UnmannedProductivity Productivity of the workshop when unmanned. Not affected
by ProductivityFactor. Defaults to 0.0.

FullyEquipped If true, then even workshops with productivity factors less than 1.0 are
considered fully equipped allowing 0-star kerbals to contribute.

30

IgnoreCrewCapacity If true, the workshop will operate even if the part’s crewCapacity
is 0 (and not check for KerbalSeat). This is most useful on parts with dynamic
crew capacities (eg, inflatables).

5.2. Recipes
Extraplanetary Launchpads provides, via recipes, a means of customizing the resource
costs for building parts, their modules and resources, and thus whole vessels. The recipes
are used also for recycling.

Essentially, recipes are config nodes with a list of ingredients with their ratios in the
form of IngredientName = Ratio, although each recipe type will be a little more
complex (details given below). The final ratio of each ingredient is calculated by dividing
the specified ratio by the sum of the ratios of all ingredients in the recipe such that the
final total is 1.0. This allows for flexibility in how the ratios are specified, so long as
consistency is maintained throughout the individual recipe: they can be considered as
“parts” as in when mixing drinks (one part this, two parts that...), as masses in any unit
(24g this, 16g that, 6g the other40), percentages (if they add up to 100), or raw ratios
(if they add up to 1.0). Note, however, that EL always uses mass for its calculations.

For example, glucose (C6H12O6) using approximate molar masses:

Using masses:

Carbon = 72
Hydrogen = 12
Oxygen = 96

Using parts:

Carbon = 6
Hydrogen = 1
Oxygen = 8

Using raw ratios:

Carbon = 0.4
Hydrogen = 0.06667
Oxygen = 0.53333

In general, the ingredients will be KSP resources. EL looks up the resource to find its
density and calculates the amount of resource required based on the total mass of the
recipe, the ingredient’s ratio within the recipe as a fraction of the total mass, and the
density of the resource to give the resource units required to achieve that mass.

Ingredients may be repeated within a recipe, in which case their ratios will simply be
added together. This makes creating recipes from chemical formula a little easier.

Unknown ingredients contribute to the total ratio and thus affect the ratios of known
ingredients. Their effects when building are undefined, but they operate as losses when
recycling (i.e., unknown ingredients simply evaporate when a part is recycled).

Ingredients specifying KSP resources that have no mass do not contribute their ratios
to the recipes total, but will be scaled by the same amount as the ingredients that do
have mass. Unknown ingredients are assumed to have mass. A recipe consisting of only
ingredients that have no mass will cause headaches.

5.2.1. Recipes for Building

Building parts (and thus vessels) requires resources. The total mass of the resources
required for building a part is given by the part’s mass, but the mix of resources needed

40A popular compound.

31

by the part is given by the part’s recipe. Also, certain resources stored in a part (e.g.
SolidFuel, Ablator) cannot normally be created by other means (neither stock ISRU
nor Kethane provide a means to produce them), nor can they be transfered, so recipes
can be used for specifying how to build them.

Any resource listed in a recipe becomes a required resource (i.e. the build will not
complete if any required resource runs out). Note, however, that normal resources that
are simply stored in the part to be built remain optional. For example, to build a tank
that holds RocketParts, A mass of RocketParts equivalent to the dry mass of the
tank is required to build the tank itself, but the RocketParts used to fill the tank
remain optional. Thus, if there is a supply of RocketParts sufficient to build the
tank, but not enough to fill it, then the tank will be only partially full (or possibly even
empty) when built.

In summary:

• Any resource mentioned in EL_Recipe or EL_ModuleRecipe is required for building
(but not for filling tanks).

• Any stored resource that has an EL_ResourceRecipe becomes a required resource
(eg, SolidFuel).

• Any resource stored in a part inside a KIS container becomes a required resource,
regardless of recipes.

EL_Recipe Specify the resources needed to build a part. EL_Recipe is to be added to
the part’s config (either by hand or using Module Manager). EL_Recipe nodes
are really two nested recipes: the outer recipe specifies the ratios between the
part’s structure (using structure as the ingredient name) and its part modules
(the ingredient name is the name of the part module). The inner recipe is the
Resources node, which specifies the resources needed to build the part’s structure.
Any part that does not have an EL_Recipe node will be given the default shown
below, but with additional modulename = 1 lines for each part module on the part
that has a corresponding EL_ModuleRecipe. Also, the Resources node will be
taken from EL_DefaultStructureRecipe (both for parts that have no EL_Recipe
node, or whose EL_Recipe node has no Resources node).

EL_Recipe {
structure = 5
Resources {

RocketParts = 1
}

}

EL_ModuleRecipe Specify the resources needed to build any part’s module. Applies to
all instances of that module. The module to which the recipe applies is specified by
the name = line, and the actual recipe for the module is specified by the Resources

32

node. The mass of the module is calculated from the part’s mass using the ratio
specified in the part’s recipe. If the named module does not exist, no module is
named (ie, no top-level name = line), or no recipe is given (no Resources node),
the recipe will be dropped from the recipe database.
The example below gives EL’s module recipe for KerbalEVA. The ratios are in
kilograms, assuming a suited kerbal has a mass of 93.75kg (10kg for the kerbal).
It can be found in Kerbal.cfg[elker].

EL_ModuleRecipe {
name = KerbalEVA
Resources {

Metal = 39
loss = 44.75

}
}

EL_DefaultStructureRecipe Specify the default recipe to be used for a part’s structure
when the part has no recipe or the recipe does not specify a recipe for its struc-
ture. There is no node in EL’s configs: it is hard coded. However, providing an
EL_DefaultStructureRecipe will override the hard-coded default.

EL_DefaultStructureRecipe {
RocketParts = 1

}

EL_ResourceRecipe Specify the resources needed to “build” a resource. The resource
to be “built” is specified by the name = line, and the recipe for the “built” resource
is specified by the Resources node. If no resource is named (ie, no top-level name
= line), or no recipe is given (no Resources node), the recipe will be dropped from
the recipe database. Recipes for undefined resources are permitted, allowing for
resource “macros”41. The example resource recipe shows Ablator being made
from RocketParts. It and a similar recipe for SolidFuel can be found in
Recipes.cfg[elrec].

EL_ResourceRecipe {
name = Ablator
Resources {

RocketParts = 1
}

}

41TODO: In theory: not tested.

33

5.2.2. Recipes for Recycling

First off, when recycling, part recipes (EL_Recipe) are used for breaking a part down into
its constituent resources. Whether from breaking down the part or “drained” from the
part’s resource storage, any resource that has a resource recipe (EL_ResourceRecipe)
will simply evaporate. However, if the resource has a recycle recipe (EL_RecycleRecipe),
then that recipe will instead be broken down to the resources specified by the recycle
recipe. A transfer recipe (EL_TransferRecipe) is used to force a stored resource that
would otherwise be lost or broken down by a recycle recipe to be transfered.

• Any resources stored in the part are drained. Those with an EL_TransferRecipe
are transferred accordingly. Those with an EL_ResourceRecipe but no EL_RecycleRecipe
are lost, otherwise they are broken down as dictated by the EL_RecycleRecipe
and the resultant resources will be transfered.

• The part is then broken down into the resources specified by its EL_Recipe and
EL_ModuleRecipe(s). Those resources with an EL_ResourceRecipe but no EL_RecycleRecipe
are lost, otherwise they get broken down further in accordance with their EL_RecycleRecipe.

• Whether transferring (from a tank) or recycling (the part itself), resources with
no recipe are reclaimed as-is at a 1:1 ratio.

EL_RecycleRecipe Specify the resources to which a resource will be broken down when
recycling. Prevents evaporation of the resource when the resource has a resource
recipe (EL_ResourceRecipe). The resource to be broken down is specified by
the name = line, and the recipe for the broken down resource is specified by the
Resources node. If no resource is named (ie, no top-level name = line), or no recipe
is given (no Resources node), the recipe will be dropped from the recipe database.
Ingredients specifying undefined resources are permitted, allowing for loss ratios to
be specified. The example recycle recipe shows RocketParts being broken down
to ScrapMetal with 10% loss (the exact name (loss) doesn’t matter so long as
it is not a defined resource). It can be found in Recipes.cfg[elrec].

EL_RecycleRecipe {
name = RocketParts
Resources {

ScrapMetal = 9
loss = 1

}
}

EL_TransferRecipe Specifies how a resource that was stored in a part is to be transfered.
Prevents the resource from being broken down by a recycle recipe when being
drained from a part’s storage. The resource to be transfered is specified by the
name = line, and the recipe for the transfered resource is specified by the Resources
node. If no resource is named (ie, no top-level name = line), or no recipe is given

34

(no Resources node), the recipe will be dropped from the recipe database. Recipes
for undefined resources are permitted, allowing for loss ratios to be specified. In
general, the same resource should be specified in the recipe, but a transfer recipe
can be used for converting a resource that does not have a recycle recipe, or for
specifying a loss factor while transferring. The example transfer recipe shows
RocketParts being transfered without any loss or conversion. It can be found
in Recipes.cfg[elrec].

EL_TransferRecipe {
name = RocketParts
Resources {

RocketParts = 1
}

}

EL_KerbalRecipe Specifies the resources making up a kerbal (whether on EVA or
boarded42). This is a special part recipe that is not actually attached to any
part43, and is used only when the unfortunate kerbal gets recycled. The kerbal
recipe shown below assumes a fully suited kerbal is 93.75kg (the default in KSP)
with 10kg for the kerbal and 83.75kg for the suit, with a 30:1 gain44 when con-
verting the kerbal to Kethane. It can be found in Kerbal.cfg[elker].

EL_KerbalRecipe {
structure = 10
KerbalEVA = 83.75
Resources {

Kethane = 30
loss = -29

}
}

5.2.3. Recipes for Converting

EL_ConverterRecipe Conversion recipes make configuring chemically correct45 resource
converters fairly simple as they allow the conversion rate to be separated from the
resource ratios. Each conversion recipe provides a name which can be referenced
by the converter config, a set of input recipes, and a set of output recipes. At least
one of each recipe set must be present for the converter recipe to be valid, but
there is no need for the two sets to have the same number of recipes.

42The kerbal is assumed to be suited or have a suit nearby in the same part
43The need for the node came from not having access to KerbalEVA part configs at the time, and keeping

it after KSP 1.2 maintains flexibility.
44Highly unrealistic, but that is how the KE-WAITNONOSTOP-01 in Kethane is configured
45Or reasonable approximations thereof.

35

All ingredients in an input recipe must be either a defined KSP resource, or an
EL_ResourceRecipe. Any ingredients in a referenced EL_ResourceRecipe
also must be defined. In the example below, LFOMix is such. It is used be-
cause stock KSP LiquidFuel and Oxidizer densities are incorrect for RP-1
(0.81kg/L) and LOX (1.141kg/L) which makes getting the rates correct difficult.
Thus LFOMix is a workaround.
Any undefined ingredients in an output recipe simply evaporate (i.e., they are
jettisoned).
Both input recipes and output recipes have a special ingredient: efficiency. The
efficiency ingredient is used to calculate the actual recipe used by the converter
based on the converter’s current efficiency, acting as keys in an efficiency curve.
The ratios of the other ingredients are interpolated between those specified by the
recipes with efficiencies on either side of the converter’s current recipe. Ingredients
in converter recipes support an optional heat parameter which defaults to 0 and is
scaled with the ingredient when the recipe is baked. Output heats are added to the
part’s internal flux while input heats are subtracted from the part’s internal flux.
If the ingredient ratios are in grams, then the heats are in kilo-joules. The mass
flow of the conversion process is governed by the input recipe with the smallest
mass.

EL_ConverterRecipe {
name = LFOFiredSmelter
Input {

efficiency = 1
LFOMix = 864.49048 -5186.94288
MetalOre = 1596.882

}
Output {

efficiency = 1
CarbonDioxide = 1056.228
Water = 288.24448
Metal = 1116.9 -9627.678

}
Input {

efficiency = 0
LFOMix = 864.49048 -5186.94288

}
Output {

efficiency = 0
Carbon = 24.0214
CarbonDioxide = 176.038
CarbonMonoxide = 476.1717
Formaldehyde = 30.02598

36

Hydrogen = 14.11116
Water = 144.12224

}
}

EL_ResourceRecipe {
name = LFOMix
Resources {

LiquidFuel = 9
Oxidizer = 11

}
}

5.2.4. Other Recipes

EL_ResourceLink While not strictly a recipe, EL_ResourceLink is used for specify-
ing resources that should be linked when setting up resource transfer after building
a new craft but before releasing it. The node is very simple: a name line that names
the link set (currently not used internally, but useful for Module Manager patches),
and a series of resource lines that specify the resources in the link set. Any link
sets with overlaps in their linked resources will result in undefined behavior46

EL_ResourceLink {
name = RocketFuel
resource = LiquidFuel
resource = Oxidizer

}

5.3. Resource Rates
The amount of work required to prepare resources may be configured using an EL_ResourceRates
node. This node is very simple in that it is just a list of resourcename = rate lines.
resourcename is the name of the resource (or default to specify the default rate), and
rate is the amount of kerbal-hours / ton (or kerbal-seconds / unit for massless resources
(such as ElectricCharge)). Note that this affects only those resources that are re-
quired to complete the build, not optional resources that will be transferred afterwards.
If default is not specified, then it defaults to 5.

EL_ResourceRates {
default = 5
ElectricCharge = 1
LiquidFuel = 0.36
Oxidizer = 0.44

46rhinodamons

37

MonoPropellant = 0.4
XenonGas = 2
Ore = 8

}

6. EL API
Calling it an API might be stretching things, but...

6.1. Interfaces
6.1.1. ELBuildControl.IBuilder

ELBuildControl is the actual workhorse for building vessels, the various pad modules
all use ELBuildControl for the common functionality. The IBuilder interface is the
methods and properties that ELBuildControl requires of the pad modules. There are
several methods and properties, but main property of interest is control which provides
access to the ELBuildControl object attached to the pad.

6.1.2. ELControlInterface

Its purpose is to allow other mods easy control and detection of the operational status
of EL’s modules. For example, mods with inflatable parts can disable the EL module
when the part is deflated and block deflation when the EL part is busy.

Fields Note that these are actually properties, so access via reflection needs to be done
using GetProperty, PropertyInfo.GetValue and PropertyInfo.Setvalue.

isBusy Read-only boolean that indicates whether the module is currently busy process-
ing something. While not enforced, the module should not be disabled while it is
busy (i.e. the part should not be deflated).

canOperate Boolean usable by other part modules to enable or disable (or detect) the
operational status of the EL part module. Setting this may cause the implementing
module to run other code (e.g. the ELSurveyStation module will recompute its
range and possibly scan for sites), so mods must invoke the property setter to
guarantee correct behavior.

6.1.3. ELWorkNode

Base interface for ELWorkSink and ELWorkSource. Any module implementing ELWorkNode
will have its workNet property set by ELVesselWorkNet when the network is updated.

6.1.4. ELWorkSink

Consumes vessel productivity to get something done.

38

6.1.5. ELWorkSource

Provides vessel productivity.

6.1.6. IResourceProvider

Interface used by ELExtractor for querying environmental resource availability and
extracting a resource from the environment.

6.2. Part Modules
6.2.1. ELControlReference

6.2.2. ELConverter

6.2.3. ELDisposablePad

6.2.4. ELExtractor

6.2.5. ELLaunchpad

6.2.6. ELNoControlSwitch

6.2.7. ELRecycler

6.2.8. ELSurveyStake

6.2.9. ELSurveyStation

6.2.10. ELTarget

6.2.11. ELWorkshop

6.3. Vessel Modules
6.3.1. ELVesselWorkNet

Central control of productivity for the entire vessel. Keeps track of output from work
sources (eg, workshops) and distributes the productivity over active work sinks (eg,
pads). Operates on unloaded vessels as well as loaded vessels so that work is properly
distributed when multiple work sinks are operating but they finish at different times
while the vessel is unloaded. Also prevents erroneous productivity credit caused by
leaving a vessel unattended for several game years47.

47Background building was implemented by keeping track of how long the vessel was unloaded. When
the vessel was loaded, the time was processed in chunks of (default) 21600 seconds every physics
frame. This works out to fifty Kerbin days per second, so if a vessel had not been visited for ten
Kerbin years, there would be an 85 second (game-time, worse for low FPS real-time) window after
switching to the vessel in which new builds would finish instantly (assuming resource availability).

39

